
Thue W Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520009/publications.pdf Version: 2024-02-01

ΤΗΠΕ \Ν/ SCHWARTZ

#	Article	IF	CITATIONS
1	Vagal afferent cholecystokinin receptor activation is required for glucagonâ€like peptideâ€1–induced satiation. Diabetes, Obesity and Metabolism, 2022, 24, 268-280.	4.4	11
2	Activation of succinate receptor 1 boosts human mast cell reactivity and allergic bronchoconstriction. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2677-2687.	5.7	7
3	Beta-Hydroxybutyrate Suppresses Hepatic Production of the Ghrelin Receptor Antagonist LEAP2. Endocrinology, 2022, 163, .	2.8	10
4	Hyperinsulinemia Is Highly Associated With Markers of Hepatocytic Senescence in Two Independent Cohorts. Diabetes, 2022, 71, 1929-1936.	0.6	11
5	Evidence that a deviation in the kynurenine pathway aggravates atherosclerotic disease in humans. Journal of Internal Medicine, 2021, 289, 53-68.	6.0	33
6	Post-oral fat-induced satiation is mediated by endogenous CCK and GLP-1 in a fat self-administration mouse model. Physiology and Behavior, 2021, 234, 113315.	2.1	4
7	Disruption of GPR35 Signaling in Bone Marrow-Derived Cells Does Not Influence Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. Metabolites, 2021, 11, 411.	2.9	6
8	Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Reports, 2021, 35, 109246.	6.4	61
9	Protective succinate-SUCNR1 metabolic stress signaling gone bad. Cell Metabolism, 2021, 33, 1276-1278.	16.2	9
10	Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells. Molecular Metabolism, 2021, 51, 101231.	6.5	11
11	Autocrine negative feedback regulation of lipolysis through sensing of NEFAs by FFAR4/GPR120 in WAT. Molecular Metabolism, 2020, 42, 101103.	6.5	16
12	Synthetic G protein oupled bile acid receptor agonists and bile acids act via basolateral receptors in ileal and colonic mucosa. Neurogastroenterology and Motility, 2020, 32, e13943.	3.0	10
13	snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature, 2020, 587, 98-102.	27.8	221
14	L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes, 2020, 69, 614-623.	0.6	54
15	Activation of metabolite receptor GPR91 promotes platelet aggregation and transcellular biosynthesis of leukotriene C4. Journal of Thrombosis and Haemostasis, 2020, 18, 976-984.	3.8	11
16	Structural basis for GPCR signaling by small polar versus largeÂlipid metabolites—discovery of non-metabolite ligands. Current Opinion in Cell Biology, 2020, 63, 38-48.	5.4	24
17	Why Warburg Works: Lactate Controls Immune Evasion through GPR81. Cell Metabolism, 2020, 31, 666-668.	16.2	31
18	The Molecular Diversity of Vagal Afferents Revealed. Trends in Neurosciences, 2019, 42, 663-666.	8.6	5

#	Article	IF	CITATIONS
19	Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1081-E1093.	3.5	32
20	Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30, 72-130.	6.5	850
21	Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. Proceedings of the United States of America, 2019, 116, 7123-7128.	7.1	35
22	Human substance P receptor binding mode of the antagonist drug aprepitant by NMR and crystallography. Nature Communications, 2019, 10, 638.	12.8	43
23	<i>N</i> -acyl taurines are endogenous lipid messengers that improve glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24770-24778.	7.1	25
24	Microbial fermentation of flaxseed fibers modulates the transcriptome of GPR41-expressing enteroendocrine cells and protects mice against diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E453-E463.	3.5	29
25	Molecular adaptations in human subcutaneous adipose tissue after ten weeks of endurance exercise training in healthy males. Journal of Applied Physiology, 2019, 126, 569-577.	2.5	25
26	The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Molecular Metabolism, 2019, 19, 49-64.	6.5	43
27	Preassociation between the 5â€HT ₇ serotonin receptor and G protein G _s : molecular determinants and association with low potency activation of adenylyl cyclase. FASEB Journal, 2019, 33, 3870-3886.	0.5	8
28	Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular Metabolism, 2018, 12, 62-75.	6.5	124
29	The HETE Is on FFAR1 and Pancreatic Islet Cells. Cell Metabolism, 2018, 27, 273-275.	16.2	10
30	Microbial regulation of the L cell transcriptome. Scientific Reports, 2018, 8, 1207.	3.3	52
31	Enterochromaffin 5-HT cells – A major target for GLP-1 and gut microbial metabolites. Molecular Metabolism, 2018, 11, 70-83.	6.5	160
32	Bidirectional GPR119 Agonism Requires Peptide YY and Glucose for Activity in Mouse and Human Colon Mucosa. Endocrinology, 2018, 159, 1704-1717.	2.8	19
33	Inhibiting RHOA Signaling in Mice Increases Glucose Tolerance and Numbers of Enteroendocrine and Other Secretory Cells in the Intestine. Gastroenterology, 2018, 155, 1164-1176.e2.	1.3	41
34	Structure-Activity Investigations and Optimisations of Non-metabolite Agonists for the Succinate Receptor 1. Scientific Reports, 2018, 8, 10010.	3.3	11
35	Gq and Gs signaling acting in synergy to control GLP-1 secretion. Molecular and Cellular Endocrinology, 2017, 449, 64-73.	3.2	45
36	GPCR-Mediated Signaling of Metabolites. Cell Metabolism, 2017, 25, 777-796.	16.2	403

#	Article	IF	CITATIONS
37	EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia–like B-cell malignancies. Blood, 2017, 129, 866-878.	1.4	14
38	Model-Based Discovery of Synthetic Agonists for the Zn ²⁺ -Sensing G-Protein-Coupled Receptor 39 (GPR39) Reveals Novel Biological Functions. Journal of Medicinal Chemistry, 2017, 60, 886-898.	6.4	29
39	Full monty of family B GPCRs. Nature Chemical Biology, 2017, 13, 819-821.	8.0	14
40	Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91. Molecular Metabolism, 2017, 6, 1585-1596.	6.5	40
41	Structureâ€based discovery of novel US28 small molecule ligands with different modes of action. Chemical Biology and Drug Design, 2017, 89, 289-296.	3.2	10
42	Functional and genetic epidemiological characterisation of the <i>FFAR4</i> (<i>GPR120</i>) p.R270H variant in the Danish population. Journal of Medical Genetics, 2016, 53, 616-623.	3.2	20
43	Oral 2â€oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor. BioFactors, 2016, 42, 665-673.	5.4	23
44	Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochemical Pharmacology, 2016, 119, 66-75.	4.4	40
45	Opposite Regulation of Ghrelin and Glucagon-like Peptide-1 by Metabolite G-Protein-Coupled Receptors. Trends in Endocrinology and Metabolism, 2016, 27, 665-675.	7.1	39
46	High molecular weight PEGylation of human pancreatic polypeptide at position 22 improves stability and reduces food intake in mice. British Journal of Pharmacology, 2016, 173, 3208-3221.	5.4	13
47	GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40). Endocrinology, 2016, 157, 4561-4569.	2.8	77
48	Getting from A to B—exploring the activation motifs of the class B adhesion G protein oupled receptor subfamily G member 4/GPR112. FASEB Journal, 2016, 30, 1836-1848.	0.5	17
49	GLP1- and GIP-producing cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness. Journal of Endocrinology, 2016, 228, 39-48.	2.6	35
50	Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism. Endocrinology, 2016, 157, 176-194.	2.8	119
51	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	6.5	810
52	The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration. Cellular Signalling, 2015, 27, 2579-2588.	3.6	61
53	GPR40 (FFAR1) – Combined Gs and Gq signaling inÂvitro is associated with robust incretin secretagogue action exÂvivo and inÂvivo. Molecular Metabolism, 2015, 4, 3-14.	6.5	175
54	Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience, 2015, 290, 126-137.	2.3	192

#	Article	lF	CITATIONS
55	Downregulation of 5-HT ₇ Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1. ACS Chemical Neuroscience, 2015, 6, 1206-1218.	3.5	10
56	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	16.0	392
57	Biased Gs Versus Gq Proteins and β-Arrestin Signaling in the NK1 Receptor Determined by Interactions in the Water Hydrogen Bond Network. Journal of Biological Chemistry, 2015, 290, 24495-24508.	3.4	31
58	Mutation-Guided Unbiased Modeling of the Fat Sensor GPR119 for High-Yield Agonist Screening. Structure, 2015, 23, 2377-2386.	3.3	6
59	Research Resource: A Chromogranin A Reporter for Serotonin and Histamine Secreting Enteroendocrine Cells. Molecular Endocrinology, 2015, 29, 1658-1671.	3.7	39
60	Transcriptional and Functional Characterization of the G Protein-Coupled Receptor Repertoire of Gastric Somatostatin Cells. Endocrinology, 2015, 156, 3909-3923.	2.8	56
61	Bioorthogonal Labeling of Ghrelin Receptor to Facilitate Studies of Ligand-Dependent Conformational Dynamics. Chemistry and Biology, 2015, 22, 1431-1436.	6.0	17
62	The MicroRNA Repertoire in Enteroendocrine Cells: Identification of miR-375 as a Potential Regulator of the Enteroendocrine Lineage. Endocrinology, 2015, 156, 3971-3983.	2.8	29
63	Structural basis for constitutive activity and agonistâ€induced activation of the enteroendocrine fat sensor <scp>GPR</scp> 119. British Journal of Pharmacology, 2014, 171, 5774-5789.	5.4	23
64	The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 InÂVivo. Cell Metabolism, 2014, 20, 1018-1029.	16.2	139
65	Effects of PYY _{3–36} and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1248-E1256.	3.5	114
66	Mapping Substance P Binding Sites on the Neurokinin-1 Receptor Using Genetic Incorporation of a Photoreactive Amino Acid. Journal of Biological Chemistry, 2014, 289, 18045-18054.	3.4	49
67	Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Molecular Metabolism, 2013, 2, 376-392.	6.5	261
68	Enteroendocrine cell types revisited. Current Opinion in Pharmacology, 2013, 13, 912-921.	3.5	123
69	GPR41/FFAR3 and GPR43/FFAR2 as Cosensors for Short-Chain Fatty Acids in Enteroendocrine Cells vs FFAR3 in Enteric Neurons and FFAR2 in Enteric Leukocytes. Endocrinology, 2013, 154, 3552-3564.	2.8	436
70	Modulation of Constitutive Activity and Signaling Bias of the Ghrelin Receptor by Conformational Constraint in the Second Extracellular Loop. Journal of Biological Chemistry, 2012, 287, 33488-33502.	3.4	33
71	The Arginine of the DRY Motif in Transmembrane Segment III Functions as a Balancing Micro-switch in the Activation of the β2-Adrenergic Receptor. Journal of Biological Chemistry, 2012, 287, 31973-31982.	3.4	30
72	PheVI:09 (Phe6.44) as a Sliding Microswitch in Seven-transmembrane (7TM) G Protein-coupled Receptor Activation. Journal of Biological Chemistry, 2012, 287, 43516-43526.	3.4	31

#	Article	IF	CITATIONS
73	An Aromatic Region To Induce a Switch between Agonism and Inverse Agonism at the Ghrelin Receptor. Journal of Medicinal Chemistry, 2012, 55, 7437-7449.	6.4	42
74	A Major Lineage of Enteroendocrine Cells Coexpress CCK, Secretin, GIP, GLP-1, PYY, and Neurotensin but Not Somatostatin. Endocrinology, 2012, 153, 5782-5795.	2.8	269
75	GPR119 as a fat sensor. Trends in Pharmacological Sciences, 2012, 33, 374-381.	8.7	165
76	G protein–coupled receptor modulation with pepducins: moving closer to the clinic. Annals of the New York Academy of Sciences, 2011, 1226, 34-49.	3.8	39
77	Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2. Journal of Biological Chemistry, 2011, 286, 29292-29302.	3.4	41
78	Unique Interaction Pattern for a Functionally Biased Ghrelin Receptor Agonist. Journal of Biological Chemistry, 2011, 286, 20845-20860.	3.4	42
79	Snapshot of a signalling complex. Nature, 2011, 477, 540-541.	27.8	16
80	A Conserved Aromatic Lock for the Tryptophan Rotameric Switch in TM-VI of Seven-transmembrane Receptors. Journal of Biological Chemistry, 2010, 285, 3973-3985.	3.4	126
81	Conserved Water-mediated Hydrogen Bond Network between TM-I, -II, -VI, and -VII in 7TM Receptor Activation. Journal of Biological Chemistry, 2010, 285, 19625-19636.	3.4	45
82	An Enteroendocrine Full Package Solution. Cell Metabolism, 2010, 11, 445-447.	16.2	10
83	Construction of covalently coupled, concatameric dimers of 7TM receptors. Journal of Receptor and Signal Transduction Research, 2009, 29, 235-245.	2.5	3
84	Overlapping Binding Site for the Endogenous Agonist, Small-Molecule Agonists, and Ago-allosteric Modulators on the Ghrelin Receptor. Molecular Pharmacology, 2009, 75, 44-59.	2.3	66
85	Ligand binding and micro-switches in 7TM receptor structures. Trends in Pharmacological Sciences, 2009, 30, 249-259.	8.7	310
86	G Protein-Coupled Receptor 39 Deficiency Is Associated with Pancreatic Islet Dysfunction. Endocrinology, 2009, 150, 2577-2585.	2.8	82
87	A moving story of receptors. Nature, 2008, 455, 473-474.	27.8	33
88	Molecular mechanism of Zn ²⁺ agonism in the extracellular domain of GPR39. FEBS Letters, 2008, 582, 2583-2588.	2.8	60
89	A Gut Feeling for Obesity: 7TM Sensors on Enteroendocrine Cells. Cell Metabolism, 2008, 8, 447-449.	16.2	128
90	Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Molecular Pharmacology, 2007, 72, 327-340.	2.3	47

#	Article	IF	CITATIONS
91	Activation of the CXCR3 Chemokine Receptor through Anchoring of a Small Molecule Chelator Ligand between TM-III, -IV, and -VI. Molecular Pharmacology, 2007, 71, 930-941.	2.3	40
92	Molecular Mechanism of Action of Monocyclam Versus Bicyclam Non-peptide Antagonists in the CXCR4 Chemokine Receptor. Journal of Biological Chemistry, 2007, 282, 27354-27365.	3.4	104
93	Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act?. Trends in Pharmacological Sciences, 2007, 28, 366-373.	8.7	161
94	GPR39 Signaling Is Stimulated by Zinc Ions But Not by Obestatin. Endocrinology, 2007, 148, 13-20.	2.8	371
95	Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Molecular Pharmacology, 2007, 72, 327-340.	2.3	17
96	Ago-Allosteric Modulation and Other Types of Allostery in Dimeric 7TM Receptors. Journal of Receptor and Signal Transduction Research, 2006, 26, 107-128.	2.5	77
97	MOLECULAR MECHANISM OF 7TM RECEPTOR ACTIVATION—A GLOBAL TOGGLE SWITCH MODEL. Annual Review of Pharmacology and Toxicology, 2006, 46, 481-519.	9.4	382
98	Molecular Pharmacological Phenotyping of EBI2. Journal of Biological Chemistry, 2006, 281, 13199-13208.	3.4	98
99	Metal Ion Site Engineering Indicates a Global Toggle Switch Model for Seven-transmembrane Receptor Activation. Journal of Biological Chemistry, 2006, 281, 17337-17346.	3.4	88
100	Ghrelin receptor mutations – too little height and too much hunger. Journal of Clinical Investigation, 2006, 116, 637-641.	8.2	92
101	GluVII:06 - A Highly Conserved and Selective Anchor Point for Non-Peptide Ligands in Chemokine Receptors. Current Topics in Medicinal Chemistry, 2006, 6, 1319-1333.	2.1	60
102	Common Structural Basis for Constitutive Activity of the Ghrelin Receptor Family. Journal of Biological Chemistry, 2004, 279, 53806-53817.	3.4	303
103	High Constitutive Signaling of the Ghrelin Receptor—ldentification of a Potent Inverse Agonist. Molecular Endocrinology, 2003, 17, 2201-2210.	3.7	455
104	NK1 Receptor Fused to β-Arrestin Displays a Single-Component, High-Affinity Molecular Phenotype. Molecular Pharmacology, 2002, 62, 30-37.	2.3	38
105	Virally encoded 7TM receptors. Oncogene, 2001, 20, 1582-1593.	5.9	92
106	Two Active Molecular Phenotypes of the Tachykinin NK1 Receptor Revealed by G-protein Fusions and Mutagenesis. Journal of Biological Chemistry, 2001, 276, 19793-19799.	3.4	82
107	The first PP supperCamelot at Bispebjerg. Scandinavian Journal of Clinical and Laboratory Investigation, Supplement, 2001, 234, 109-21.	2.7	0
108	Mutational analysis of the interaction of the N- and C-terminal ends of angiotensin II with the rat AT1A receptor. British Journal of Pharmacology, 2000, 130, 1263-1268.	5.4	25

#	Article	IF	CITATIONS
109	Partial Agonism through a Zinc-Ion Switch Constructed between Transmembrane Domains III and VII in the Tachykinin NK1 Receptor. Molecular Pharmacology, 2000, 58, 263-270.	2.3	61
110	A Highly Selective Cc Chemokine Receptor (Ccr)8 Antagonist Encoded by the Poxvirus Molluscum Contagiosum. Journal of Experimental Medicine, 2000, 191, 171-180.	8.5	144
111	Disulfide Bridge Engineering in the Tachykinin NK1 Receptor. Biochemistry, 2000, 39, 667-675.	2.5	28
112	Binding of Norbinaltorphimine (norBNI) Congeners to Wild-Type and Mutant Mu and Kappa Opioid Receptors:  Molecular Recognition Loci for the Pharmacophore and Address Components of Kappa Antagonists. Journal of Medicinal Chemistry, 2000, 43, 1573-1576.	6.4	48
113	Conversion of agonist site to metal-ion chelator site in the beta 2-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12322-12327.	7.1	110
114	Split-receptors in the tachykinin neurokinin-1 system. Mutational analysis of intracellular loop 3. FEBS Journal, 1998, 251, 217-226.	0.2	25
115	Mutational Evidence for a Common κ Antagonist Binding Pocket in the Wild-Type κ and Mutant μ [K303E] Opioid Receptorsâ€. Journal of Medicinal Chemistry, 1998, 41, 4911-4914.	6.4	91
116	Steric Hindrance Mutagenesis versus Alanine Scan in Mapping of Ligand Binding Sites in the Tachykinin NK1 Receptor. Molecular Pharmacology, 1998, 53, 166-175.	2.3	63
117	ls there a â€~lock' for all agonist â€~keys' in 7TM receptors?. Trends in Pharmacological Sciences, 1996, 17 213-216.	⁷ ,8.7	127
118	Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis. FEBS Letters, 1996, 399, 264-266.	2.8	99
119	Construction of a High Affinity Zinc Switch in the k-Opioid Receptor. Journal of Biological Chemistry, 1996, 271, 7875-7878.	3.4	79
120	Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Nature, 1995, 374, 74-77.	27.8	173
121	Locating ligand-binding sites in 7tm receptors by protein engineering. Current Opinion in Biotechnology, 1994, 5, 434-444.	6.6	290
122	Mutations in transmembrane segment VIJ of the AT ₁ receptor differentiate between closely related insurmountable and competitive angiotensin antagonists. British Journal of Pharmacology, 1994, 113, 331-333.	5.4	22
123	Differentiation between binding sites for angiotensin II and nonpeptide antagonists on the angiotensin II type 1 receptors Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7046-7050.	7.1	109
124	Different binding epitopes on the NK1 receptor for substance P and a non-peptide antagonist. Nature, 1993, 362, 345-348.	27.8	241
125	Regional Distribution of Putative NPY Y1Receptors and Neurons Expressing Y1mRNA in Forebrain Areas of the Rat Central Nervous System. European Journal of Neuroscience, 1993, 5, 1622-1637.	2.6	140
126	Conserved HisVI-17of the NK-1 receptor is involved in binding of non-peptide antagonists but not substance P. FEBS Letters, 1993, 336, 506-510.	2.8	34

#	Article	IF	CITATIONS
127	Two nonpeptide tachykinin antagonists act through epitopes on corresponding segments of the NK1 and NK2 receptors Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6194-6198.	7.1	59
128	Implications of replacing peptide bonds in the COOHâ€ŧerminal B chain domain of insulin by the Î"(CH ₂ â€NH) linker. International Journal of Peptide and Protein Research, 1993, 42, 578-584.	0.1	10
129	Stable expression of high affinity NK1(substance P) and NK2(neurokinin A) receptors but low affinity NK3(neurokinin B) receptors in transfected CHO cells. FEBS Letters, 1992, 296, 241-244.	2.8	34
130	Partial processing of the neuropeptide Y precursor in transfected CHO cells. FEBS Letters, 1990, 261, 101-105.	2.8	28
131	Biosynthesis of peptide precursors and protease inhibitors using new constitutive and inducible eukaryotic expression vectors. FEBS Letters, 1990, 267, 289-294.	2.8	159
132	Y1 and Y2 receptors for neuropeptide Y. FEBS Letters, 1989, 245, 209-214.	2.8	178
133	Expression of human pancreatic polypeptide precursors from a dicistronic mRNA in mammalian cells. FEBS Letters, 1987, 219, 181-188.	2.8	11
134	Truncated glucagonâ€like peptide I, an insulinâ€releasing hormone from the distal gut. FEBS Letters, 1987, 211, 169-174.	2.8	498
135	Impaired α-carboxyamidation of gastrin in vitamin C-deficient guinea pigs. FEBS Letters, 1986, 196, 151-154.	2.8	32
136	The processing of peptide precursors. FEBS Letters, 1986, 200, 1-10.	2.8	235
137	Isolation of ovine pancreatic icosapeptide: a peptide product containing one cysteine residue. FEBS Letters, 1984, 168, 293-298.	2.8	13
138	Nervous control of pancreatic endocrine secretion in pigs. Acta Physiologica Scandinavica, 1981, 111, 15-22.	2.2	26
139	Isolation and biogenesis of a new peptide from pancreatic islets. Nature, 1981, 294, 589-591.	27.8	65
140	Simultaneous recording of the gastro-entero-pancreatic hormonal peptide response to food in man. Metabolism: Clinical and Experimental, 1980, 29, 777-779.	3.4	33
141	Somatostatin cell processes as pathways for paracrine secretion. Science, 1979, 205, 1393-1395.	12.6	497