Anders S Byström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2518854/publications.pdf

Version: 2024-02-01

26 2,229 18 26
papers citations h-index g-index

27 27 27 1621 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	SSD1 modifies phenotypes of Elongator mutants. Current Genetics, 2020, 66, 481-485.	1.7	3
2	SSD1 suppresses phenotypes induced by the lack of Elongator-dependent tRNA modifications. PLoS Genetics, 2019, 15, e1008117.	3. 5	10
3	Gene <i>miaA</i> for postâ€transcriptional modification of tRNA _{XXA} is important for morphological and metabolic differentiation in <i>Streptomyces</i> Molecular Microbiology, 2019, 112, 249-265.	2.5	26
4	Elongator subunit 3 (ELP3) modifies ALS through tRNA modification. Human Molecular Genetics, 2018, 27, 1276-1289.	2.9	56
5	Identification of factors that promote biogenesis of tRNA _{CGA} ^{Ser} . RNA Biology, 2018, 15, 1286-1294.	3.1	6
6	Elongatorâ€"a tRNA modifying complex that promotes efficient translational decoding. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 401-408.	1.9	29
7	Loss of ncm5 and mcm5 wobble uridine side chains results in an altered metabolic profile. Metabolomics, 2016, 12, 177.	3.0	11
8	Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis. PLoS ONE, 2016, 11, e0163115.	2 . 5	12
9	The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Research, 2015, 43, 9489-9499.	14.5	67
10	Yeast E longator protein Elp1p does not undergo proteolytic processing in exponentially growing cells. MicrobiologyOpen, 2015, 4, 867-878.	3.0	2
11	Meta-regulation of Arabidopsis Auxin Responses Depends on tRNA Maturation. Cell Reports, 2015, 11, 516-526.	6.4	27
12	Elongator, a conserved complex required for wobble uridine modifications in Eukaryotes. RNA Biology, 2014, 11, 1519-1528.	3.1	115
13	Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcm5s2U in tRNA. Biochemical and Biophysical Research Communications, 2014, 454, 441-445.	2.1	78
14	Elongator Complex Influences Telomeric Gene Silencing and DNA Damage Response by Its Role in Wobble Uridine tRNA Modification. PLoS Genetics, 2011, 7, e1002258.	3.5	87
15	Unexpected Accumulation of ncm5U and ncm5s2U in a trm9 Mutant Suggests an Additional Step in the Synthesis of mcm5U and mcm5s2U. PLoS ONE, 2011, 6, e20783.	2.5	66
16	Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular Microbiology, 2010, 76, 1082-1094.	2.5	87
17	Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular Microbiology, 2010, 77, 531-531.	2.5	1
18	Allele-Specific Suppressors of <i>lin-1(R175Opal)</i> Identify Functions of MOC-3 and DPH-3 in tRNA Modification Complexes in <i>Caenorhabditis elegans</i> Genetics, 2010, 185, 1235-1247.	2.9	7

#	Article	IF	CITATIONS
19	Defects in tRNA Modification Associated with Neurological and Developmental Dysfunctions in Caenorhabditis elegans Elongator Mutants. PLoS Genetics, 2009, 5, e1000561.	3.5	119
20	Eukaryotic Wobble Uridine Modifications Promote a Functionally Redundant Decoding System. Molecular and Cellular Biology, 2008, 28, 3301-3312.	2.3	219
21	A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in <i>Saccharomyces cerevisiae</i>). Rna, 2008, 14, 2183-2194.	3.5	170
22	Kluyveromyces lactis Â-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Research, 2007, 36, 1072-1080.	14.5	49
23	A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. Rna, 2007, 13, 1245-1255.	3.5	166
24	Elevated Levels of Two tRNA Species Bypass the Requirement for Elongator Complex in Transcription and Exocytosis. Molecular Cell, 2006, 24, 139-148.	9.7	247
25	An early step in wobble uridine tRNA modification requires the Elongator complex. Rna, 2005, 11, 424-436.	3.5	382
26	The Kluyveromyces lactis Â-toxin targets tRNA anticodons. Rna, 2005, 11, 1648-1654.	3.5	187