
Yousuke Ooyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2518057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Designs and Syntheses of Organic Dyes for Dye ensitized Solar Cells. European Journal of Organic Chemistry, 2009, 2009, 2903-2934.	2.4	558
2	Photophysical and Electrochemical Properties, and Molecular Structures of Organic Dyes for Dye‧ensitized Solar Cells. ChemPhysChem, 2012, 13, 4032-4080.	2.1	319
3	Dyeâ€Sensitized Solar Cells Based On Donor–Acceptor Ï€â€Conjugated Fluorescent Dyes with a Pyridine Ring as an Electronâ€Withdrawing Anchoring Group. Angewandte Chemie - International Edition, 2011, 50, 7429-7433.	13.8	233
4	Reversible Near-Infrared/Blue Mechanofluorochromism of Aminobenzopyranoxanthene. Journal of the American Chemical Society, 2015, 137, 6436-6439.	13.7	156
5	Molecular design of mechanofluorochromic dyes and their solid-state fluorescence properties. Journal of Materials Chemistry, 2011, 21, 8372.	6.7	136
6	Dyeâ€Sensitized Solar Cells Based on Donorâ€ï€â€Acceptor Fluorescent Dyes with a Pyridine Ring as an Electronâ€Withdrawingâ€Injecting Anchoring Group. Chemistry - A European Journal, 2011, 17, 14837-14843.	3.3	126
7	Electron-Transfer Reaction of Oxygen Species on TiO ₂ Nanoparticles Induced by Sub-band-gap Illumination. Journal of Physical Chemistry C, 2010, 114, 1240-1245.	3.1	118
8	Fluorescence PET (photo-induced electron transfer) sensors for water based on anthracene–boronic acid ester. Chemical Communications, 2011, 47, 4448.	4.1	118
9	Mechanofluorochromism of a Series of Benzofuro[2,3â€ <i>c</i>]oxazolo[4,5â€ <i>a</i>]carbazoleâ€₹ype Fluorescent Dyes. European Journal of Organic Chemistry, 2009, 2009, 5321-5326.	2.4	98
10	Heterocyclic Quinol-Type Fluorophores: Synthesis, X-ray Crystal Structures, and Solid-State Photophysical Properties of Novel 5-Hydroxy-5-substituent-benzo[b]naphtho[1,2-d]furan-6-one and 3-Hydroxy-3-substituent-benzo[kl]xanthen-2-one Derivatives. Chemistry - A European Journal, 2006, 12, 7827-7838.	3.3	94
11	Detection of water in organic solvents by photo-induced electron transfer method. Organic and Biomolecular Chemistry, 2011, 9, 1314-1316.	2.8	93
12	Electrochemical reduction of graphene oxide in organic solvents. Electrochimica Acta, 2011, 56, 5363-5368.	5.2	88
13	Dye-sensitized solar cells based on D–π–A fluorescent dyes with two pyridyl groups as an electron-withdrawing–injecting anchoring group. Chemical Communications, 2013, 49, 2548.	4.1	88
14	Synthesis of Dithienogermole-Containing π-Conjugated Polymers and Applications to Photovoltaic Cells. Organometallics, 2011, 30, 3233-3236.	2.3	76
15	Photovoltaic performance of dye-sensitized solar cells based on D–π–A type BODIPY dye with two pyridyl groups. New Journal of Chemistry, 2013, 37, 2479.	2.8	74
16	Molecular design of novel non-planar heteropolycyclic fluorophores with bulky substituents: convenient synthesis and solid-state fluorescence characterization. Organic and Biomolecular Chemistry, 2006, 4, 3406.	2.8	70
17	Lewis-Acid Sites of TiO ₂ Surface for Adsorption of Organic Dye Having Pyridyl Group as Anchoring Unit. Journal of Physical Chemistry C, 2013, 117, 16364-16370.	3.1	70
18	Molecular design and synthesis of fluorescence PET (photo-induced electron transfer) sensors for detection of water in organic solvents. RSC Advances, 2013, 3, 23255.	3.6	68

#	Article	IF	CITATIONS
19	Heterocyclic quinol-type fluorophores. Dramatic solid-state fluorescence enhancement behaviour of imidazoanthraquinol-type clathrate hosts upon inclusion of various kinds of organic solvent molecules. New Journal of Chemistry, 2005, 29, 1204.	2.8	66
20	New molecular design of donor-Ï€-acceptor dyes for dye-sensitized solar cells: control of molecular orientation and arrangement on TiO ₂ surface. New Journal of Chemistry, 2011, 35, 111-118.	2.8	63
21	Heterocyclic quinol-type fluorophores. Synthesis of novel imidazoanthraquinol derivatives and their photophysical properties in benzene and in the crystalline state. New Journal of Chemistry, 2005, 29, 447.	2.8	62
22	Synthesis of Dithienobismoles as Novel Phosphorescence Materials. Organometallics, 2010, 29, 3239-3241.	2.3	61
23	Fluorescence PET (photo-induced electron transfer) sensor for water based on anthracene-amino acid. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 52-55.	3.9	60
24	A new cosensitization method using the Lewis acid sites of a TiO ₂ photoelectrode for dye-sensitized solar cells. Chemical Communications, 2014, 50, 6398-6401.	4.1	57
25	Mechanofluorochromism of heteropolycyclic donor–π-acceptor type fluorescent dyes. Tetrahedron, 2010, 66, 7268-7271.	1.9	54
26	A colorimetric and fluorescent sensor for water in acetonitrile based on intramolecular charge transfer: D–(π–A) ₂ -type pyridine–boron trifluoride complex. Chemical Communications, 2018, 54, 10144-10147.	4.1	51
27	Development of highly-sensitive fluorescence PET (photo-induced electron transfer) sensor for water: anthracene〓boronic acid ester. RSC Advances, 2014, 4, 25330.	3.6	50
28	Synthesis of new-type donor–acceptor π-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole fluorescent dyes and their photovoltaic performances of dye-sensitized solar cells. Tetrahedron Letters, 2007, 48, 9167-9170.	1.4	47
29	benzofurano[3,2-b]naphthoquinol-typeThe IUPAC name for the parent benzofurano[3,2-b]naphthoquinone is naphtho[2,3-b]benzofuran-6,11-dione. clathrate hosts upon inclusion of amine moleculesElectronic supplementary information (ESI) available: Table S1 containing crystal data and structure refinement parameters for amine-inclusion compounds of 2c and 3c. See	1.1	46
30	Synthesis and Solid-State Fluorescence Properties of Structural Isomers of Novel ² , 708-714. Benzofuro[2,3-c]oxazolocarbazole-Type Fluorescent Dyes. European Journal of Organic Chemistry, 2007, 2007, 3613-3621.	2.4	46
31	Development of a D–π–A dye with benzothienopyridine as the electron-withdrawing anchoring group for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 3293-3296. Heterocyclic quinol-type fluorophores. Part 1. Synthesis of new benzofurano[3,2-b]naphthoquinolThe	10.3	46
32	IUPAC name for the parent benzofurano[3,2-b]naphthoquinone is naphtho[2,3-b]benzofuran-6,11-dione. derivatives and their photophysical properties in solution and in the crystalline stateElectronic supplementary information (ESI) available: Table S1 containing crystal data and structure refinement parameters for 2c, 3c, and 3d. See http://www.rsc.org/suppdata/p2/b1/b109198k/. Perkin Transactions II	1.1	45
33	RSC, 2002, , 700-707. Synthesis of Bis(diarylphosphino)dithienosilole Derivatives as Novel Photo- and Electroluminescence Materials. Organometallics, 2007, 26, 6591-6595.	2.3	44
34	Dyeâ€Sensitized Solar Cells Based on a Novel Fluorescent Dye with a Pyridine Ring and a Pyridinium Dye with the Pyridinium Ring Forming Strong Interactions with Nanocrystalline TiO ₂ Films. European Journal of Organic Chemistry, 2010, 2010, 92-100.	2.4	44
35	Hybrid conjugated polymers with alternating dithienosilole or dithienogermole and tricoordinate boron units. Polymer Chemistry, 2018, 9, 291-299.	3.9	44
36	Photovoltaic performance of dye-sensitized solar cells based on donor–acceptor π-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes with a carboxyl group at different positions of the chromophore skeleton. Organic and Biomolecular Chemistry, 2007, 5, 2046-2054.	2.8	43

#	Article	IF	CITATIONS
37	Photovoltaic performance of dye-sensitized solar cells based on a series of new-type donor–acceptor Ï€-conjugated sensitizer, benzofuro[2,3-c]oxazolo[4,5-a]carbazole fluorescent dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 177-185.	3.9	42
38	Highly sensitive fluorescence PET (photo-induced electron transfer) sensor for water based on anthracene–bisboronic acid ester. RSC Advances, 2012, 2, 7666.	3.6	42
39	A BODIPY sensor for water based on a photo-induced electron transfer method with fluorescence enhancement and attenuation systems. New Journal of Chemistry, 2016, 40, 7278-7281.	2.8	42
40	Fluorescence sensor for water based on PET (photo-induced electron transfer): Anthracene-bis(aminomethyl)phenylboronic acid ester. Dyes and Pigments, 2015, 123, 248-253.	3.7	40
41	Synthesis of Group 14 Dipyridinometalloles with Enhanced Electron-Deficient Properties and Solid-State Phosphorescence. Organometallics, 2014, 33, 517-521.	2.3	39
42	Synthesis and Properties of Benzofuran-Fused Silole and Germole Derivatives: Reversible Dimerization and Crystal Structures of Monomers and Dimers. Organometallics, 2016, 35, 2327-2332.	2.3	39
43	Design and Syntheses of Highly Emissive Aminobenzopyrano-xanthene Dyes in the Visible and Far-Red Regions. Organic Letters, 2014, 16, 258-261.	4.6	38
44	Development of D–π–Cat fluorescent dyes with a catechol group for dye-sensitized solar cells based on dye-to-TiO2 charge transfer. Journal of Materials Chemistry A, 2014, 2, 8500.	10.3	38
45	Water-tunable solvatochromic and nanoaggregate fluorescence: dual colour visualisation and quantification of trace water in tetrahydrofuran. Physical Chemistry Chemical Physics, 2017, 19, 1209-1216.	2.8	38
46	Dramatic Effects of the Substituents on the Solid-state Fluorescence Properties of Structural Isomers of Novel Benzofuro[2,3-c]oxazolocarbazole-type Fluorophores. Chemistry Letters, 2006, 35, 902-903.	1.3	36
47	Dye-sensitized solar cells based on novel donor–acceptor π-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes exhibiting solid-state fluorescence. New Journal of Chemistry, 2007, 31, 2076.	2.8	36
48	Tetraphenylethene– and diphenyldibenzofulvene–anthracene-based fluorescence sensors possessing photo-induced electron transfer and aggregation-induced emission enhancement characteristics for detection of water. New Journal of Chemistry, 2018, 42, 13339-13350.	2.8	35
49	Heterocyclic Quinolâ€Type Fluorophores: Solidâ€State Fluorescence Change in Crystals of Benzo[<i>b</i>]naphtho[1,2â€ <i>d</i>]furanâ€6â€oneâ€Type Fluorophore upon Inclusion of Organic Solvent Molecules. European Journal of Organic Chemistry, 2008, 2008, 2564-2570.	2.4	34
50	Synthesis and fluorescence and electrochemical properties of D–΀-A structural isomers of benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type and benzofuro[2,3-c]oxazolo[5,4-a]carbazole-type fluorescent dyes. Organic and Biomolecular Chemistry, 2010, 8, 2756.	2.8	33
51	Synthesis of diphenylamino-carbazole substituted BODIPY dyes and their photovoltaic performance in dye-sensitized solar cells. RSC Advances, 2013, 3, 18099.	3.6	33
52	The design of a novel fluorescent PET sensor for proton and water: A phenylaminonaphtho[1,2-d]oxazol-2-yl-type fluorophore containing proton donor and acceptor groups. Dyes and Pigments, 2009, 82, 58-64.	3.7	32
53	ESR Study on the Reversible Electron Transfer from O ₂ ^{2â^'} to Ti ⁴⁺ on TiO ₂ Nanoparticles Induced by Visible-Light Illumination. Journal of Physical Chemistry C, 2009, 113, 1160-1163.	3.1	32
54	Synthesis, characterization, and photovoltaic applications of dithienogermole-dithienylbenzothiadiazole and -dithienylthiazolothiazole copolymers. Polymer, 2011, 52, 3912-3916.	3.8	32

#	Article	IF	CITATIONS
55	Synthesis, Optical Properties, and Crystal Structures of Dithienostannoles. Organometallics, 2013, 32, 4136-4141.	2.3	32
56	Solvatochromism of novel donor–π–acceptor type pyridinium dyes in halogenated and non-halogenated solvents. New Journal of Chemistry, 2009, 33, 2311.	2.8	31
57	Specific solvatochromism of D–ï€-A type pyridinium dyes bearing various counter anions in halogenated solvents. Tetrahedron, 2013, 69, 1755-1760.	1.9	28
58	Aggregation-induced emission (AIE) characteristic of water-soluble tetraphenylethene (TPE) bearing four sulfonate salts. New Journal of Chemistry, 2017, 41, 4747-4749.	2.8	28
59	Solidâ€State Fluorescence Changes of 2â€(4â€Cyanophenyl)â€5â€{4â€(diethylamino)phenyl]â€3 <i>H</i> â€imidazo[4,5â€ <i>a</i>]naphthalene upon I Organic Solvent Molecules. European Journal of Organic Chemistry, 2008, 2008, 5899-5906.	n el asion d	f27
60	Electrosynthesis and charge-transport properties of poly(3′,4′-ethylenedioxy-2,2′:5′,2′′-terthioph Materials Chemistry and Physics, 2012, 131, 752-756.	ene). 4.0	27
61	Preparation and Reactions of Dichlorodithienogermoles. Organometallics, 2015, 34, 5609-5614.	2.3	27
62	Synthesis of organic photosensitizers containing dithienogermole and thiadiazolo[3,4-c]pyridine units for dye-sensitized solar cells. Dalton Transactions, 2016, 45, 13817-13826.	3.3	27
63	Synthesis, Properties, and Polymerization of Spiro[(dipyridinogermole)(dithienogermole)]. Organometallics, 2016, 35, 20-26.	2.3	27
64	Phenazine-based photosensitizers for singlet oxygen generation. Materials Chemistry Frontiers, 2020, 4, 589-596.	5.9	27
65	Improvement of photovoltages in organic dye-sensitized solar cells by Li intercalation in particulate TiO2 electrodes. Applied Physics Letters, 2007, 90, 103517.	3.3	26
66	Attachment of Disilanylene–Oligothienylene Polymers on TiO2 Surface by Photochemical Cleavage of the Si–Si Bonds. Chemistry Letters, 2008, 37, 316-317.	1.3	24
67	Heterocyclic quinol-type fluorophores. Part 9: Effect of forming a continuous intermolecular hydrogen bonding chain between fluorophores on the solid-state fluorescence properties. Tetrahedron, 2010, 66, 7954-7960.	1.9	24
68	Synthesis and Optical Properties of Dithienostiboles. Chemistry Letters, 2012, 41, 1002-1003.	1.3	24
69	Control of Molecular Arrangement and/or Orientation of D–π–A Fluorescent Dyes for Dye-sensitized Solar Cells. Chemistry Letters, 2012, 41, 1384-1396.	1.3	24
70	BODIPY dye possessing solid-state red fluorescence and green metallic luster properties in both crystalline and amorphous states. RSC Advances, 2014, 4, 1163-1167.	3.6	24
71	Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell. Physical Chemistry Chemical Physics, 2016, 18, 30662-30676.	2.8	24
72	Development of an intramolecular charge transfer-type colorimetric and fluorescence sensor for water by fusion with a juloidine structure and complexation with boron trifluoride. RSC Advances, 2019, 9, 31466-31473.	3.6	24

#	Article	IF	CITATIONS
73	Development of D–ï€â€"A dyes with a pyrazine ring as an electron-withdrawing anchoring group for dye-sensitized solar cells. RSC Advances, 2014, 4, 30225.	3.6	23
74	Effective co-sensitization using D–̀–A dyes with a pyridyl group adsorbing at BrÃ,nsted acid sites and Lewis acid sites on a TiO ₂ surface for dye-sensitized solar cells. RSC Advances, 2015, 5, 2531-2535.	3.6	23
75	Synthesis, optical and electrochemical properties, and photovoltaic performance of a panchromatic and near-infrared (D) ₂ â€″I€â€"A type BODIPY dye with pyridyl group or cyanoacrylic acid. RSC Advances, 2017, 7, 13072-13081.	3.6	23
76	Colorimetric and ratiometric fluorescence sensing of water based on 9-methyl pyrido[3,4- <i>b</i>]indole-boron trifluoride complex. Dalton Transactions, 2019, 48, 2086-2092.	3.3	23
77	A New Class of Fluorescent Dye for Sensing Water in Organic Solvents by Photoâ€Induced Electron Transfer – A (Phenylamino)naphtho[1,2â€ <i>d</i>]oxazolâ€2â€ylâ€Type Fluorophore with both Protonâ€Bindir and Protonâ€Donating Sites. European Journal of Organic Chemistry, 2008, 2008, 5239-5243.	n g. 4	22
78	Dye-sensitized solar cells based on a functionally separated D–Ĩ€â€"A fluorescent dye with an aldehyde as an electron-accepting group. New Journal of Chemistry, 2013, 37, 2336.	2.8	22
79	Synthesis, optical, electrochemical and photovoltaic properties of a D–Ĩ€â€"A fluorescent dye with triazine ring as electron-withdrawing anchoring group for dye-sensitized solar cells. RSC Advances, 2015, 5, 21012-21018.	3.6	22
80	In situ conductivity measurements of polythiophene partially containing 3,4-ethylenedioxythiophene and 3-hexylthiophene. Journal of Solid State Electrochemistry, 2015, 19, 71-76.	2.5	22
81	Synthesis, Properties, and Complex Formation of Antimony- and Bismuth-Bridged Bipyridyls. Organometallics, 2019, 38, 1516-1523.	2.3	22
82	Development of fluorescent sensors based on a combination of PET (photo-induced electron transfer) and FRET (FA¶rster resonance energy transfer) for detection of water. Materials Advances, 2020, 1, 354-362.	5.4	22
83	A facile synthesis of solid-emissive fluorescent dyes: dialkylbenzo[b]naphtho[2,1-d]furan-6-one-type fluorophores with strong blue and green fluorescence emission properties. Tetrahedron Letters, 2007, 48, 5791-5793.	1.4	21
84	Synthesis of organosilicon polymers containing donor–acceptor type π-conjugated units and their applications to dye-sensitized solar cells. Journal of Organometallic Chemistry, 2007, 692, 801-805.	1.8	21
85	Synthesis of conjugated D–A polymers bearing bi(dithienogermole) as a new donor component and their applications to polymer solar cells and transistors. RSC Advances, 2015, 5, 12686-12691.	3.6	21
86	Development of a Dualâ€Fluorescence Emission Sensor Based on Photoâ€Induced Electron Transfer and Aggregationâ€Induced Emission Enhancement for Detection of Water. ChemistrySelect, 2017, 2, 7765-7770.	1.5	21
87	Highly Efficient Singlet Oxygen Generation and High Oxidation Resistance Enhanced by Arsole-Polymer-Based Photosensitizer: Application as a Recyclable Photooxidation Catalyst. Macromolecules, 2020, 53, 2006-2013.	4.8	21
88	Fluorescence sensors for detection of water based on tetraphenylethene–anthracene possessing both solvatofluorochromic properties and aggregation-induced emission (AIE) characteristics. New Journal of Chemistry, 2021, 45, 4164-4173.	2.8	21
89	Influence of extended π-conjugation units on carrier mobilities in conducting polymers. Chemical Physics Letters, 2006, 420, 387-390.	2.6	20
90	Solid-emissive fluorophores constructed by a non-planar heteropolycyclic structure with bulky substituents: synthesis and X-ray crystal structures. Organic and Biomolecular Chemistry, 2007, 5, 1260.	2.8	20

Yousuke Ooyama

#	Article	IF	CITATIONS
91	Mechanofluorochromism of carbazole-type D–π–A fluorescent dyes. Tetrahedron, 2012, 68, 529-533.	1.9	20
92	Solid-state fluorescence properties and mechanofluorochromism ofÂD–π-A pyridinium dyes bearing various counter anions. Tetrahedron, 2013, 69, 5818-5822.	1.9	20
93	Effect of Substituents in Catechol Dye Sensitizers on Photovoltaic Performance of Type II Dye‣ensitized Solar Cells. ChemPhysChem, 2015, 16, 3049-3057.	2.1	20
94	Group 14 Dithienometallole-Linked Ethynylene-Conjugated Porphyrin Dimers. Inorganic Chemistry, 2016, 55, 7432-7441.	4.0	20
95	Photovoltaic performances of type-II dye-sensitized solar cells based on catechol dye sensitizers: retardation of back-electron transfer by PET (photo-induced electron transfer). Materials Chemistry Frontiers, 2017, 1, 2243-2255.	5.9	20
96	Synthesis and specific solvatochromism of D–π–A type pyridinium dye. Tetrahedron, 2012, 68, 8577-8580.	1.9	19
97	Synthesis of dithienosilole-based highly photoluminescent donor–acceptor type compounds. Dalton Transactions, 2013, 42, 3646.	3.3	19
98	Synthesis and electrical properties of novel oligothiophenes partially containing 3,4-ethylenedioxythiophenes. RSC Advances, 2013, 4, 2501-2508.	3.6	19
99	Development of a functionally separated D–Ĩ€-A fluorescent dye with a pyrazyl group as an electron-accepting group for dye-sensitized solar cells. Organic Chemistry Frontiers, 2015, 2, 552-559.	4.5	19
100	Mitochondriaâ€Targeting Polyamine–Protoporphyrin Conjugates for Photodynamic Therapy. ChemMedChem, 2018, 13, 15-19.	3.2	19
101	A new co-sensitization method employing D–π–A dye with pyridyl group and D–π–Cat dye with catechol unit for dye-sensitized solar cells. Dyes and Pigments, 2015, 122, 40-45.	3.7	18
102	Synthesis of D–A polymers with a disilanobithiophene donor and a pyridine or pyrazine acceptor and their applications to dye-sensitized solar cells. RSC Advances, 2015, 5, 36673-36679.	3.6	18
103	Synthesis of Poly(dithienogermole)s. Organometallics, 2016, 35, 2333-2338.	2.3	18
104	Dye-sensitized solar cell based on an inclusion complex of a cyclic porphyrin dimer bearing four 4-pyridyl groups and fullerene C ₆₀ . RSC Advances, 2016, 6, 16150-16158.	3.6	18
105	Synthesis and optical and photovoltaic properties of dithienosilole–dithienylpyridine and dithienosilole–pyridine alternate polymers and polymer–B(C6F5)3 complexes. Polymer Journal, 2013, 45, 1153-1158.	2.7	17
106	Synthesis of Carbazoleâ€Type Dâ€Ï€â€A Fluorescent Dyes Possessing Solidâ€State Red Fluorescence Properties. European Journal of Organic Chemistry, 2012, 2012, 4853-4859.	2.4	16
107	Single oxygen generation sensitized by spiro(dipyridinogermole)(dithienogermole)s. Dalton Transactions, 2016, 45, 15679-15683.	3.3	16
108	Fused π-conjugated imidazolium liquid crystals: synthesis, self-organization, and fluorescence properties. RSC Advances, 2016, 6, 9152-9159.	3.6	16

#	Article	IF	CITATIONS
109	Synthesis and optical and electrochemical properties of julolidine-structured pyrido[3,4-b]indole dye. Physical Chemistry Chemical Physics, 2017, 19, 3565-3574.	2.8	16
110	Singlet oxygen generation properties of an inclusion complex of cyclic free-base porphyrin dimer and fullerene C ₆₀ . RSC Advances, 2017, 7, 18690-18695.	3.6	16
111	Synthesis, optical and electrochemical properties of propeller-type 3,5,8-trithienyl-BODIPY dyes. Materials Chemistry Frontiers, 2020, 4, 2762-2771.	5.9	16
112	Template-free Formation of Microspheres Based on Poly(N-methylaniline). Polymer Journal, 2006, 38, 732-736.	2.7	15
113	Development of D–΀–A Fluorescent Dyes with a 3â€Pyridyl Group as Electronâ€Withdrawing Anchoring Group for Dye‧ensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 3713-3720.	2.4	15
114	Fluorescent sensor for water based on photo-induced electron transfer and Förster resonance energy transfer: anthracene-(aminomethyl)phenylboronic acid ester-BODIPY structure. RSC Advances, 2019, 9, 15335-15340.	3.6	15
115	Drastic solid-state fluorescence enhancement behaviour of imidazo[4,5-a]naphthalene-type fluorescent hosts upon inclusion of polyethers and tert-butyl alcohol. Tetrahedron, 2009, 65, 1467-1474.	1.9	14
116	Highly efficient organic light-emitting diodes (OLEDs) based on an iridium complex with rigid cyclometalated ligand. Organic Electronics, 2010, 11, 632-640.	2.6	14
117	Drastic Solid‣tate Fluorescence Enhancement Behaviour of Phenanthro[9,10â€ <i>d</i>]imidazoleâ€Type Fluorescent Hosts upon Inclusion of Carboxylic Acids. European Journal of Organic Chemistry, 2009, 2009, 5979-5990.	2.4	13
118	Charge transport properties of polymer films comprising oligothiophene in silsesquioxane network. Polymer Chemistry, 2011, 2, 868.	3.9	13
119	Oligothiophenes incorporated in a polysilsesquioxane network: application to tunable transparent conductive films. Journal of Materials Chemistry, 2012, 22, 16407.	6.7	13
120	Highly Efficient Cosensitized Plastic-Substrate Dye-Sensitized Solar Cells with Black Dye and Pyridine-Anchor Organic Dye. Bulletin of the Chemical Society of Japan, 2015, 88, 366-374.	3.2	13
121	Ligandâ€Free Copper atalyzed Cyano―and Alkynylstannylation of Arynes. ChemistrySelect, 2017, 2, 3212-3215.	1.5	13
122	Development of anchored oligothiophenes on substrates for the application to the tunable transparent conductive films. Polymer, 2009, 50, 6198-6201.	3.8	12
123	Nanosized starlike molecules. Synthesis and optical properties of 2,4,6-tris(disilanylenebithienylene)-1,3,5-triazine derivatives. Journal of Organometallic Chemistry, 2012, 702, 67-72.	1.8	12
124	Synthesis of novel dyes having EDOT-containing oligothiophenes as π-linker for panchromatic dye-sensitized solar cells. Synthetic Metals, 2015, 207, 65-71.	3.9	12
125	Development of optical sensor for water in acetonitrile based on propeller-structured BODIPY-type pyridine–boron trifluoride complex. RSC Advances, 2020, 10, 33836-33843.	3.6	12
126	Polymer films doped with fluorescent sensor for moisture and water droplet based on photo-induced electron transfer. RSC Advances, 2021, 11, 17046-17050.	3.6	12

#	Article	IF	CITATIONS
127	Synthesis of Specific Solvatochromic Dâ€Ï€â€A Dyes with Pyridinium Ring as Electronâ€Withdrawing Group for Dye‧ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 4533-4538.	2.4	11
128	Preparation and Photoinduced Energy and Electron Transfer of Donorâ€Siliconâ€Acceptor Polymers. Asian Journal of Organic Chemistry, 2014, 3, 170-175.	2.7	11
129	Synthesis of Dipyridinogermole–Copper Complex as Soluble Phosphorescent Material. Chemistry Letters, 2016, 45, 502-504.	1.3	11
130	Dithienogermole-containing D–݀–A–݀–A Photosensitizers for Dye-sensitized Solar Cells. Chemistry Letters, 2017, 46, 310-312.	1.3	11
131	Photophysical properties of phenanthro[9,10-d]imidazole-type fluorescent hosts upon inclusion of organic solvent molecules. Tetrahedron, 2009, 65, 8336-8343.	1.9	10
132	Synthesis of disilanylene polymers with donor–acceptor-type π-conjugated units and applications to dye-sensitized solar cells. Journal of Organometallic Chemistry, 2012, 719, 30-35.	1.8	10
133	Development of a simple method for fabrication of transparent conductive films with high mechanical strength. Science and Technology of Advanced Materials, 2012, 13, 045005.	6.1	10
134	Photoinduced electron injection from an organic dye having a pyridyl anchor to Lewis acid site of TiO ₂ surface. RSC Advances, 2015, 5, 71387-71392.	3.6	10
135	Impact of the molecular structure and adsorption mode of D–ï€â€"A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO ₂ surface. Physical Chemistry Chemical Physics, 2016, 18, 32992-32998.	2.8	10
136	Synthesis, photophysical and electrochemical properties of pyridine, pyrazine and triazine-based (D–π–) ₂ A fluorescent dyes. Beilstein Journal of Organic Chemistry, 2019, 15, 1712-1721.	2.2	10
137	Direct comparison of dithienosilole and dithienogermole as ï€-conjugated linkers in photosensitizers for dye-sensitized solar cells. Dalton Transactions, 2019, 48, 16671-16678.	3.3	10
138	Synthesis, Xâ€ray Crystal Structures and Solidâ€State Fluorescence Properties of 3â€Dibutylaminoâ€6â€alkoxyâ€6â€phenylnaphtho[2,3â€ <i>b</i>]benzofuranâ€11(6 <i>H</i>)â€one Derivative Journal of Organic Chemistry, 2007, 2007, 5010-5019.	s. Europea	in 9
139	Poly(N-methylaniline) microsphere formation and control of the average diameter by simple chemical polymerization. Materials Chemistry and Physics, 2007, 106, 279-285.	4.0	9
140	Monodisperse and isolated microspheres of poly(N-methylaniline) prepared by dispersion polymerization. European Polymer Journal, 2010, 46, 1480-1487.	5.4	9
141	Preparation of poly(disilanylenetetracyanobutadienyleneoligothienylene)s as new donor–acceptor type organosilicon polymers. Journal of Organometallic Chemistry, 2014, 749, 255-260.	1.8	9
142	Effects of π-conjugated side chains on properties and performances of photovoltaic copolymers. Synthetic Metals, 2014, 187, 30-36.	3.9	9
143	Development of D–π–A dye with (pyridiniumyl)alkanesulfonate as electron-withdrawing anchoring group for dye-sensitized solar cell. Dyes and Pigments, 2015, 123, 349-354.	3.7	9
144	Synthesis of silicon- or carbon-bridged polythiophenes and application to organic thin-film transistors. Polymer Journal, 2016, 48, 645-651.	2.7	9

#	Article	IF	CITATIONS
145	Development of a D–π–A pyrazinium photosensitizer possessing singlet oxygen generation. RSC Advances, 2016, 6, 5428-5435.	3.6	9
146	Studies on Spherically Distributed LUMO and Electron-Accepting Properties of Caged Hexakis(germasesquioxanes). Organometallics, 2017, 36, 2536-2540.	2.3	9
147	Synthesis, Xâ€ray Crystal Structures, and Solidâ€State Fluorescence Properties of 5,5â€Dialkylâ€9â€dibutylaminoâ€5 <i>H</i> â€benzo[<i>b</i>]naphtho[1,2â€ <i>d</i>]furanâ€6â€one and 3,3â€Dialkylâ€9â€dibutylaminoâ€3 <i>H</i> â€benzo[<i>kl</i>]xanthenâ€2â€one. European Journal of Organic Chemistry, 2008, 2008, 3085-3094.	2.4	8
148	Trapping of atomic hydrogens in cage-shaped silsesquioxanes by electric discharge. Chemical Communications, 2010, 46, 2076.	4.1	8
149	Synthesis of donor–acceptor type new organosilicon polymers and their applications to dye-sensitized solar cells. Journal of Organometallic Chemistry, 2013, 741-742, 97-101.	1.8	8
150	Synthesis of (Benzofurano)(benzothieno)germole. ChemistrySelect, 2017, 2, 3106-3109.	1.5	8
151	Development of phenazine-2,3-diol-based photosensitizers: effect of formyl groups on singlet oxygen generation. Materials Chemistry Frontiers, 2021, 5, 5298-5304.	5.9	8
152	Development of highly sensitive fluorescent sensor and fluorescent sensor-doped polymer films for trace amounts of water based on photo-induced electron transfer. Materials Advances, 2021, 2, 7662-7670.	5.4	8
153	Dye-Sensitized Solar Cells Based on D–π–A Fluorescent Dyes with Pyridine Ring Forming Strong Interaction with Nanocrystalline TiO2. Bulletin of the Chemical Society of Japan, 2010, 83, 1113-1121.	3.2	7
154	Optical absorption spectrum of pentacene cation radicals measured by charge-modulation spectroscopy. Chemical Physics Letters, 2010, 495, 228-231.	2.6	7
155	Enhanced photovoltaic performances of panchromatic EDOT-containing dye by introducing bulky dialkylfluorene units inÂdonor moiety. Dyes and Pigments, 2016, 132, 262-269.	3.7	7
156	Synthesis and Photophysical and Electrochemical Properties of Structural Isomers of Pyrazine-Based D-I€-A-I€-D Fluorescent Dyes. Bulletin of the Chemical Society of Japan, 2018, 91, 1704-1709.	3.2	7
157	Synthesis of novel ï∈-extended D–A–D-type dipyrido[3,2- <i>a</i> :2′,3′- <i>c</i>]phenazine derivatives a their photosensitized singlet oxygen generation. New Journal of Chemistry, 2021, 45, 2264-2275.	and 2.8	7
158	Tetraphenylethene–anthracene-based fluorescence emission sensor for the detection of water with photo-induced electron transfer and aggregation-induced emission characteristics. New Journal of Chemistry, 2022, 46, 12474-12481.	2.8	7
159	Changes in Electrochemical and Optical Properties of Oligoalkylthiophene Film Induced by Bipolaron Formation. Journal of Physical Chemistry B, 2006, 110, 1529-1535.	2.6	6
160	Synthesis, X-ray crystal structure, and solid-state blue fluorescence of dialkylbenzo[b]naphtho[2,1-d]furan-6-one-type fluorophores. Tetrahedron, 2008, 64, 7219-7224.	1.9	6
161	Hybridization of Carbon Nanotubes with Si–π Polymers and Attachment of Resulting Hybrids to TiO2 Surface. Chemistry Letters, 2011, 40, 87-89.	1.3	6
162	Intermolecular distances of carboxylated TEMPO derivatives on TiO2 evaluated by spin-probe ESR. Physical Chemistry Chemical Physics, 2012, 14, 15988.	2.8	6

#	Article	IF	CITATIONS
163	Synthesis of a Conjugated D-A Polymer with Bi(disilanobithiophene) as a New Donor Component. Molecules, 2016, 21, 789.	3.8	6
164	Synthesis of Pyridinothienogermoles as Unsymmetrically Condensed Germoles. Organometallics, 2019, 38, 1606-1613.	2.3	6
165	Hydrophobic modification of SiO ₂ surface by aminosilane derivatives. Composite Interfaces, 2019, 26, 15-25.	2.3	6
166	Synthesis, optical and electrochemical properties of 4,4′-bibenzo[<i>c</i>]thiophene derivatives. RSC Advances, 2021, 11, 18870-18880.	3.6	6
167	Interference and electro-optical Kerr effects responsible for electroabsorption spectra of transparent Parylene-C films. Chemical Physics Letters, 2008, 457, 115-118.	2.6	5
168	Synthesis of starâ€shaped molecules with pyreneâ€containing Ï€â€conjugated units linked by an organosilicon core. Applied Organometallic Chemistry, 2010, 24, 540-544.	3.5	5
169	Synthesis of a Novel Family of Polysilsesquioxanes Having Oligothiophenes with Well-Defined Structures. International Journal of Polymer Science, 2012, 2012, 1-10.	2.7	5
170	Low bandgap polymers with benzodithiophene and bisthienylacrylonitrile units for photovoltaic applications. European Polymer Journal, 2013, 49, 1634-1641.	5.4	5
171	Synthesis of pentamethyldisilanyl-substituted starlike molecule with triazine core and its application to dye-sensitized solar cells. Journal of Organometallic Chemistry, 2016, 825-826, 63-68.	1.8	5
172	Mechanofluorochromism of (D–π–) ₂ A-type azine-based fluorescent dyes. RSC Advances, 2022, 12, 13797-13809.	3.6	5
173	The effect of the inclusion of guest molecules on the solid-state fluorescence of naphthooxazole-type fluorophores. Dyes and Pigments, 2008, 77, 315-322.	3.7	4
174	Drastic Enhancement of Cycle Lifetime of Electrochromic Devices Using Polysilsesquioxane as an Anchoring Agent. Chemistry Letters, 2008, 37, 964-965.	1.3	4
175	Preparation of Dithienogermole-containing Polysilsesquioxane Films for Sensing Nitroaromatics. Chemistry Letters, 2017, 46, 438-441.	1.3	4
176	Synthesis and optical and electrochemical properties of a phenanthrodithiophene (fused-bibenzo[c]thiophene) derivative. Organic and Biomolecular Chemistry, 2017, 15, 7302-7307.	2.8	4
177	Optical and Photosensitizing Properties of Spiro(dipyridinogermole)(dithienogermole)s with Eletronâ€Đonating Amino and Electronâ€Withdrawing Pyridinothiadiazole Substituents. ChemistrySelect, 2018, 3, 8604-8609.	1.5	4
178	Attachment of poly[(ethoxyhexylsilylene)oligothienylene]s to inorganic oxide surface. Synthetic Metals, 2009, 159, 817-820.	3.9	3
179	Synthesis and photophysical properties of structural isomers of novel 2,10-disubstituted benzofuro[2,3-e]naphthoxazole-type fluorescent dyes. Dyes and Pigments, 2011, 91, 481-488.	3.7	3
180	Synthesis of dithienogermole-containing polythiophenes. Synthetic Metals, 2017, 227, 87-92.	3.9	3

Yousuke Ooyama

#	Article	IF	CITATIONS
181	Preparation of branched molecules by regioselective hydrosilation of tetrakis(ethynyldimethylsilyl)silanes and some of their properties. Journal of Organometallic Chemistry, 2017, 846, 360-366.	1.8	3
182	Synthesis and Chromic Behaviors of Dithienosiloles with Push-Pull Substituents Toward VOC Detection. Molecular Crystals and Liquid Crystals, 2010, 529, 1-9.	0.9	2
183	Development of Dye-Sensitized Solar Cells Based on D-^ ^pi;-A Pyridinium Dye without Carboxylic Acid Moiety as Anchoring Group. Electrochemistry, 2013, 81, 325-327.	1.4	2
184	Electrical Characteristics of Pentacene Films on Cross-Linked Polymeric Insulators of Varying Thicknesses. ACS Omega, 2016, 1, 784-788.	3.5	2
185	Preparation and reactions of 4,4-dilithiodithienogermole. Journal of Organometallic Chemistry, 2019, 883, 47-51.	1.8	2
186	Synthesis, photophysical and electrochemical properties of 1,1′,3,3′-tetrasubstituted-4,4′-bibenzo[<i>c</i>]thiophene derivatives with different substituents on the thiophene rings. New Journal of Chemistry, 2021, 45, 13258-13261.	2.8	2
187	Development of 4,4′-bibenzo[<i>c</i>]thiophene fluorophores with substituents on the thiophene rings. New Journal of Chemistry, 2021, 45, 17085-17094.	2.8	2
188	Absorption spectra of field-generated cation radical in triphenyldiamine film: Lack of intervalence-charge transfer band. Chemical Physics Letters, 2010, 485, 100-103.	2.6	1
189	Expression of fluorescence properties by self-PET (photo-induced electron transfer) suppression both in solution and in the solid state. New Journal of Chemistry, 2017, 41, 13215-13218.	2.8	1
190	Unusual Electrochemical Response of Oligoalkylthiophene Films: Involvement of Bipolarons. Molecular Crystals and Liquid Crystals, 2006, 455, 367-372.	0.9	0
191	Distibylation of Acetylenes with Ph ₂ Sb–SbPh ₂ : Synthesis, Crystal Structures and Phosphorescence Properties of Bis(diphenylstibyl)ethenes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 1181-1187.	0.7	0
192	Hydrophobic modification of SiO ₂ surface with disilanobiphenyl and disilanobithiophene and the application to pentacene-based organic transistors. Composite Interfaces, 2019, 26, 221-231.	2.3	0
193	Synthesis, Optical and Electrochemical Properties of Benzofuro[2,3- <i>c</i>]carbazoloquinol Fluorescent Dyes. Electrochemistry, 2021, 89, 562-566.	1.4	0