List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2516911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival. Blood Cancer Discovery, 2022, 3, 50-65.	2.6	14
2	Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease. Nature Communications, 2022, 13, 159.	5.8	42
3	Reversible lysine fatty acylation of an anchoring protein mediates adipocyte adrenergic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
4	Development of a NanoBRET assay to validate inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. RSC Chemical Biology, 2022, 3, 468-485.	2.0	6
5	Histone H2B Deacylation Selectivity: Exploring Chromatin's Dark Matter with an Engineered Sortase. Journal of the American Chemical Society, 2022, 144, 3360-3364.	6.6	24
6	Long-chain fatty acyl coenzyme A inhibits NME1/2 and regulates cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117013119.	3.3	12
7	How do aerobic organisms solve the oxygen sensitivity problem of [4Feâ€4S] in radical SAM enzymes?. FASEB Journal, 2022, 36, .	0.2	0
8	Oxygen level regulates N-terminal translation elongation of selected proteins through deoxyhypusine hydroxylation. Cell Reports, 2022, 39, 110855.	2.9	3
9	A Proteomic Approach Identifies Isoform-Specific and Nucleotide-Dependent RAS Interactions. Molecular and Cellular Proteomics, 2022, 21, 100268.	2.5	4
10	Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer. Oncogene, 2021, 40, 1644-1658.	2.6	45
11	Protein cysteine palmitoylation in immunity and inflammation. FEBS Journal, 2021, 288, 7043-7059.	2.2	31
12	Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annual Review of Biochemistry, 2021, 90, 245-285.	5.0	72
13	Pharmacological Advantage of SIRT2-Selective versus pan-SIRT1–3 Inhibitors. ACS Chemical Biology, 2021, 16, 1266-1275.	1.6	13
14	Dph3 Enables Aerobic Diphthamide Biosynthesis by Donating One Iron Atom to Transform a [3Fe–4S] to a [4Fe–4S] Cluster in Dph1–Dph2. Journal of the American Chemical Society, 2021, 143, 9314-9319.	6.6	7
15	Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Frontiers in Cell and Developmental Biology, 2021, 9, 717503.	1.8	14
16	High-Throughput Enzyme Assay for Screening Inhibitors of the ZDHHC3/7/20 Acyltransferases. ACS Chemical Biology, 2021, 16, 1318-1324.	1.6	6
17	Emerging roles of Sirtuin 2 in cardiovascular diseases. FASEB Journal, 2021, 35, e21841.	0.2	9
18	Diphthamide promotes TOR signaling by increasing the translation of proteins in the TORC1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3

#	Article	IF	CITATIONS
19	Sirtuin Modulators in Cellular and Animal Models of Human Diseases. Frontiers in Pharmacology, 2021, 12, 735044.	1.6	21
20	Highâ€Throughput Screening Identifies Ascorbyl Palmitate as a SIRT2 Deacetylase and Defattyâ€Acylase Inhibitor. ChemMedChem, 2021, 16, 3484-3494.	1.6	1
21	Cysteine derivatives as acetyl lysine mimics to inhibit zinc-dependent histone deacetylases for treating cancer. European Journal of Medicinal Chemistry, 2021, 225, 113799.	2.6	4
22	Indirubin Derivatives as Dual Inhibitors Targeting Cyclin-Dependent Kinase and Histone Deacetylase for Treating Cancer. Journal of Medicinal Chemistry, 2021, 64, 15280-15296.	2.9	21
23	Binding Affinity Determines Substrate Specificity and Enables Discovery of Substrates for N-Myristoyltransferases. ACS Catalysis, 2021, 11, 14877-14883.	5.5	18
24	Sirtuin 3 Inhibition Targets AML Stem Cells through Perturbation of Fatty Acid Oxidation. Blood, 2021, 138, 2240-2240.	0.6	1
25	Attenuation of NLRP3 Inflammasome Activation by Indirubin-Derived PROTAC Targeting HDAC6. ACS Chemical Biology, 2021, 16, 2746-2751.	1.6	32
26	NAD+-consuming enzymes in immune defense against viral infection. Biochemical Journal, 2021, 478, 4071-4092.	1.7	21
27	Structural Basis of the Substrate Selectivity of Viperin. Biochemistry, 2020, 59, 652-662.	1.2	28
28	A Regulatory Cysteine Residue Mediates Reversible Inactivation of NAD ⁺ -Dependent Aldehyde Dehydrogenases to Promote Oxidative Stress Response. ACS Chemical Biology, 2020, 15, 28-32.	1.6	4
29	Garcinol Is an HDAC11 Inhibitor. ACS Chemical Biology, 2020, 15, 2866-2871.	1.6	18
30	A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature, 2020, 586, 434-439.	13.7	141
31	An improved 4′-aminomethyltrioxsalen-based nucleic acid crosslinker for biotinylation of double-stranded DNA or RNA. RSC Advances, 2020, 10, 39870-39874.	1.7	2
32	Substrate-Dependent Modulation of SIRT2 by a Fluorescent Probe, 1-Aminoanthracene. Biochemistry, 2020, 59, 3869-3878.	1.2	6
33	Simultaneous Inhibition of SIRT2 Deacetylase and Defatty-Acylase Activities via a PROTAC Strategy. ACS Medicinal Chemistry Letters, 2020, 11, 2305-2311.	1.3	29
34	TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13447-13456.	3.3	46
35	N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chemical Biology, 2020, 15, 1747-1758.	1.6	19
36	NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nature Communications, 2020, 11, 1067.	5.8	62

#	Article	IF	CITATIONS
37	Diphthamide. , 2020, , 520-535.		1
38	A Glycoconjugated SIRT2 Inhibitor with Aqueous Solubility Allows Structure-Based Design of SIRT2 Inhibitors. ACS Chemical Biology, 2019, 14, 1802-1810.	1.6	24
39	Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chemical Biology, 2019, 14, 1393-1397.	1.6	43
40	The Crystal Structure of Dph2 in Complex with Elongation Factor 2 Reveals the Structural Basis for the First Step of Diphthamide Biosynthesis. Biochemistry, 2019, 58, 4343-4351.	1.2	7
41	SIRT2 and Lysine Fatty Acylation Regulate the Activity of RalB and Cell Migration. ACS Chemical Biology, 2019, 14, 2014-2023.	1.6	25
42	The asymmetric function of Dph1–Dph2 heterodimer in diphthamide biosynthesis. Journal of Biological Inorganic Chemistry, 2019, 24, 777-782.	1.1	11
43	Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins. Methods in Molecular Biology, 2019, 2009, 129-136.	0.4	2
44	Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling. Methods in Molecular Biology, 2019, 2009, 137-147.	0.4	2
45	Non-oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis. Cancer Cell, 2019, 35, 916-931.e9.	7.7	70
46	Novel Lysine-Based Thioureas as Mechanism-Based Inhibitors of Sirtuin 2 (SIRT2) with Anticancer Activity in a Colorectal Cancer Murine Model. Journal of Medicinal Chemistry, 2019, 62, 4131-4141.	2.9	40
47	Enterobactin-Specific Antibodies Induced by a Novel Enterobactin Conjugate Vaccine. Applied and Environmental Microbiology, 2019, 85, .	1.4	17
48	Updates on the epigenetic roles of sirtuins. Current Opinion in Chemical Biology, 2019, 51, 18-29.	2.8	48
49	Loss of Sirtuin 1 Alters the Secretome of Breast Cancer Cells by Impairing Lysosomal Integrity. Developmental Cell, 2019, 49, 393-408.e7.	3.1	102
50	A Smallâ€Molecule SIRT2 Inhibitor That Promotes Kâ€Ras4a Lysine Fattyâ€Acylation. ChemMedChem, 2019, 14, 744-748.	1.6	36
51	HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5487-5492.	3.3	121
52	SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26625-26632.	3.3	84
53	A Click Chemistry Approach Reveals the Chromatin-Dependent Histone H3K36 Deacylase Nature of SIRT7. Journal of the American Chemical Society, 2019, 141, 2462-2473.	6.6	49
54	Introduction: Posttranslational Protein Modification. Chemical Reviews, 2018, 118, 887-888.	23.0	45

#	Article	IF	CITATIONS
55	Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b. ACS Central Science, 2018, 4, 71-80.	5.3	25
56	Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chemical Reviews, 2018, 118, 919-988.	23.0	312
57	Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis. Biochemistry, 2018, 57, 3454-3459.	1.2	17
58	Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis. Science, 2018, 359, 1247-1250.	6.0	48
59	HDAC1 Governs Iron Homeostasis Independent of Histone Deacetylation in Iron-Overload Murine Models. Antioxidants and Redox Signaling, 2018, 28, 1224-1237.	2.5	17
60	Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis. Methods in Enzymology, 2018, 606, 421-438.	0.4	3
61	Selective Usage of Isozymes for Stress Response. ACS Chemical Biology, 2018, 13, 3059-3064.	1.6	7
62	The Enzymatic Activities of Sirtuins. , 2018, , 45-62.		2
63	Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activityâ€Dependent Inhibition, and Onâ€Target Anticancer Activities. ChemMedChem, 2018, 13, 1890-1894.	1.6	38
64	HPLC-Based Enzyme Assays for Sirtuins. Methods in Molecular Biology, 2018, 1813, 225-234.	0.4	4
65	S-Palmitoylation of Junctional Adhesion Molecule C Regulates Its Tight Junction Localization and Cell Migration. Journal of Biological Chemistry, 2017, 292, 5325-5334.	1.6	38
66	Deacylation Mechanism by SIRT2 Revealed in the 1′-SH-2′-O-Myristoyl Intermediate Structure. Cell Chemical Biology, 2017, 24, 339-345.	2.5	40
67	Substrate-Dependent Cleavage Site Selection by Unconventional Radical <i>S</i> -Adenosylmethionine Enzymes in Diphthamide Biosynthesis. Journal of the American Chemical Society, 2017, 139, 5680-5683.	6.6	19
68	A Versatile Approach for Site‧pecific Lysine Acylation in Proteins. Angewandte Chemie, 2017, 129, 1665-1669.	1.6	10
69	A Versatile Approach for Site‧pecific Lysine Acylation in Proteins. Angewandte Chemie - International Edition, 2017, 56, 1643-1647.	7.2	61
70	SIRT7 Is an RNA-Activated Protein Lysine Deacylase. ACS Chemical Biology, 2017, 12, 300-310.	1.6	83
71	Using Clickable NAD+ Analogs to Label Substrate Proteins of PARPs. Methods in Molecular Biology, 2017, 1608, 95-109.	0.4	3
72	Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Scientific Reports, 2017, 7, 17406.	1.6	13

#	Article	IF	CITATIONS
73	SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. ELife, 2017, 6, .	2.8	62
74	SIRT3 Is a Novel Metabolic Driver of and Therapeutic Target for Chemotherapy Resistant Dlbcls. Blood, 2017, 130, 643-643.	0.6	9
75	SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. ELife, 2017, 6, .	2.8	70
76	SIRT5 Reveals Novel Enzymatic Activities of Sirtuins. , 2016, , 139-147.		0
77	Lysine fatty acylation promotes lysosomal targeting of TNF-α. Scientific Reports, 2016, 6, 24371.	1.6	30
78	Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4320-4325.	3.3	263
79	SIRT7 Is Activated by DNA and Deacetylates Histone H3 in the Chromatin Context. ACS Chemical Biology, 2016, 11, 742-747.	1.6	57
80	The Substrate Specificity of Sirtuins. Annual Review of Biochemistry, 2016, 85, 405-429.	5.0	208
81	SIRT2 Reverses 4-Oxononanoyl Lysine Modification on Histones. Journal of the American Chemical Society, 2016, 138, 12304-12307.	6.6	65
82	Cbr1 is a Dph3 reductase required for the tRNA wobble uridine modification. Nature Chemical Biology, 2016, 12, 995-997.	3.9	14
83	HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine. ACS Chemical Biology, 2016, 11, 2685-2692.	1.6	84
84	Organometallic Complex Formed by an Unconventional Radical <i>S</i> -Adenosylmethionine Enzyme. Journal of the American Chemical Society, 2016, 138, 9755-9758.	6.6	21
85	Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nature Chemical Biology, 2016, 12, 614-620.	3.9	79
86	Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science, 2016, 353, 45-50.	6.0	302
87	An improved fluorogenic assay for SIRT1, SIRT2, and SIRT3. Organic and Biomolecular Chemistry, 2016, 14, 2186-2190.	1.5	26
88	A SIRT2-Selective Inhibitor Promotes c-Myc Oncoprotein Degradation and Exhibits Broad Anticancer Activity. Cancer Cell, 2016, 29, 297-310.	7.7	183
89	Lessons learned from a SIRT2-selective inhibitor. Oncotarget, 2016, 7, 22971-22972.	0.8	2
90	Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1. Biochemical and Biophysical Research Communications, 2015, 467, 503-508.	1.0	1

#	Article	IF	CITATIONS
91	High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet*. Molecular and Cellular Proteomics, 2015, 14, 1489-1500.	2.5	95
92	Sirtuins in Epigenetic Regulation. Chemical Reviews, 2015, 115, 2350-2375.	23.0	205
93	Efficient Demyristoylase Activity of SIRT2 Revealed by Kinetic and Structural Studies. Scientific Reports, 2015, 5, 8529.	1.6	143
94	Identification of proteins capable of metal reduction from the proteome of the Gramâ€positive bacterium <scp><i>Desulfotomaculum reducens</i>â€<scp>MI</scp>â€1 using an <scp>NADH</scp>â€based activity assay. Environmental Microbiology, 2015, 17, 1977-1990.</scp>	1.8	12
95	Inhibition of intestinal tumor formation by deletion of the DNA methyltransferase 3a. Oncogene, 2015, 34, 1822-1830.	2.6	25
96	Sirtuins and Novel Protein Post Translational Modifications. FASEB Journal, 2015, 29, 496.1.	0.2	1
97	Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death and Disease, 2014, 5, e1269-e1269.	2.7	37
98	Sirtuin inhibitors as anticancer agents. Future Medicinal Chemistry, 2014, 6, 945-966.	1.1	148
99	Dph7 Catalyzes a Previously Unknown Demethylation Step in Diphthamide Biosynthesis. Journal of the American Chemical Society, 2014, 136, 6179-6182.	6.6	24
100	Dph3 Is an Electron Donor for Dph1-Dph2 in the First Step of Eukaryotic Diphthamide Biosynthesis. Journal of the American Chemical Society, 2014, 136, 1754-1757.	6.6	59
101	Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Organic and Biomolecular Chemistry, 2014, 12, 7498-7502.	1.5	70
102	Revealing CD38 Cellular Localization Using a Cell Permeable, Mechanism-Based Fluorescent Small-Molecule Probe. Journal of the American Chemical Society, 2014, 136, 5656-5663.	6.6	41
103	A fluorogenic assay for screening Sirt6 modulators. Organic and Biomolecular Chemistry, 2013, 11, 5213.	1.5	47
104	The biosynthesis and biological function of diphthamide. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 515-521.	2.3	62
105	Identification of Lysine Succinylation Substrates and the Succinylation Regulatory Enzyme CobB in Escherichia coli. Molecular and Cellular Proteomics, 2013, 12, 3509-3520.	2.5	236
106	Succinate is an inflammatory signal that induces IL- $1\hat{l}^2$ through HIF- $1\hat{l}_{\pm}$. Nature, 2013, 496, 238-242.	13.7	2,845
107	SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature, 2013, 496, 110-113.	13.7	611
108	Identification of ADP-ribosylation sites of CD38 mutants by precursor ion scanning mass spectrometry. Analytical Biochemistry, 2013, 433, 218-226.	1.1	7

#	Article	IF	CITATIONS
109	Metabolic Characterization of a Sirt5 deficient mouse model. Scientific Reports, 2013, 3, 2806.	1.6	115
110	Detecting Sirtuin-Catalyzed Deacylation Reactions Using 32P-Labeled NAD and Thin-Layer Chromatography. Methods in Molecular Biology, 2013, 1077, 179-189.	0.4	3
111	Chemogenomic approach identified yeast YLR143W as diphthamide synthetase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19983-19987.	3.3	25
112	The Bicyclic Intermediate Structure Provides Insights into the Desuccinylation Mechanism of Human Sirtuin 5 (SIRT5). Journal of Biological Chemistry, 2012, 287, 28307-28314.	1.6	77
113	<i>Plasmodium falciparum</i> Sir2A Preferentially Hydrolyzes Medium and Long Chain Fatty Acyl Lysine. ACS Chemical Biology, 2012, 7, 155-159.	1.6	70
114	Protein Lysine Acylation and Cysteine Succination by Intermediates of Energy Metabolism. ACS Chemical Biology, 2012, 7, 947-960.	1.6	201
115	YBR246W Is Required for the Third Step of Diphthamide Biosynthesis. Journal of the American Chemical Society, 2012, 134, 773-776.	6.6	31
116	Thiosuccinyl Peptides as Sirt5-Specific Inhibitors. Journal of the American Chemical Society, 2012, 134, 1922-1925.	6.6	77
117	Labeling Substrate Proteins of Poly(ADPâ€ribose) Polymerases with Clickable NAD Analog. Current Protocols in Chemical Biology, 2012, 4, 19-34.	1.7	1
118	The unusual enzyme chemistry in diphthamide biosynthesis. FASEB Journal, 2012, 26, 470.3.	0.2	0
119	Mechanistic understanding of Pyrococcus horikoshiiDph2, a [4Fe–4S] enzyme required for diphthamidebiosynthesis. Molecular BioSystems, 2011, 7, 74-81.	2.9	37
120	Protein posttranslational modifications: Chemistry, biology, and applications. Molecular BioSystems, 2011, 7, 14-15.	2.9	16
121	Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science, 2011, 334, 806-809.	6.0	1,165
122	ATRA-induced HL-60 myeloid leukemia cell differentiation depends on the CD38 cytosolic tail needed for membrane localization, but CD38 enzymatic activity is unnecessary. Experimental Cell Research, 2011, 317, 910-919.	1.2	25
123	S-Adenosylmethionine-dependent alkylation reactions: When are radical reactions used?. Bioorganic Chemistry, 2011, 39, 161-170.	2.0	48
124	Diphthamide biosynthesis requires an organic radical generated by an iron–sulphur enzyme. Nature, 2010, 465, 891-896.	13.7	180
125	Reconstitution of Diphthine Synthase Activity <i>in Vitro</i> . Biochemistry, 2010, 49, 9649-9657.	1.2	21
126	Clickable NAD Analogues for Labeling Substrate Proteins of Poly(ADP-ribose) Polymerases. Journal of the American Chemical Society, 2010, 132, 9363-9372.	6.6	112

#	Article	IF	CITATIONS
127	Structural Basis for Enzymatic Evolution from a Dedicated ADP-ribosyl Cyclase to a Multifunctional NAD Hydrolase. Journal of Biological Chemistry, 2009, 284, 27637-27645.	1.6	53
128	Mechanism-Based Small Molecule Probes for Labeling CD38 on Live Cells. Journal of the American Chemical Society, 2009, 131, 1658-1659.	6.6	29
129	Investigating the ADP-ribosyltransferase Activity of Sirtuins with NAD Analogues and ³² P-NAD. Biochemistry, 2009, 48, 2878-2890.	1.2	156
130	Covalent and Noncovalent Intermediates of an NAD Utilizing Enzyme, Human CD38. Chemistry and Biology, 2008, 15, 1068-1078.	6.2	38
131	High-Throughput Selection for Cellulase Catalysts Using Chemical Complementation. Journal of the American Chemical Society, 2008, 130, 17446-17452.	6.6	41
132	Nicotinamide adenine dinucleotide: beyond a redox coenzyme. Organic and Biomolecular Chemistry, 2007, 5, 2541.	1.5	69
133	Enzymatic Tailoring of Enterobactin Alters Membrane Partitioning and Iron Acquisition. ACS Chemical Biology, 2006, 1, 29-32.	1.6	48
134	Bromoenterobactins as Potent Inhibitors of a Pathogen-Associated, Siderophore-ModifyingC-Glycosyltransferase. Journal of the American Chemical Society, 2006, 128, 9324-9325.	6.6	6
135	How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nature Chemical Biology, 2006, 2, 132-138.	3.9	273
136	Optimized design and synthesis of chemical dimerizer substrates for detection of glycosynthase activity via chemical complementation. Bioorganic and Medicinal Chemistry, 2006, 14, 6940-6953.	1.4	8
137	The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proceedings of the United States of America, 2006, 103, 16502-16507.	3.3	264
138	Investigation of the Mechanism of Resistance to Third-Generation Cephalosporins by Class C β-Lactamases by Using Chemical Complementation. ChemBioChem, 2005, 6, 2055-2067.	1.3	8
139	From The Cover: In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 571-576.	3.3	156
140	In Vitro Characterization of Salmochelin and Enterobactin Trilactone Hydrolases IroD, IroE, and Fes. Journal of the American Chemical Society, 2005, 127, 11075-11084.	6.6	167
141	Enhanced Macrocyclizing Activity of the Thioesterase from Tyrocidine Synthetase in Presence of Nonionic Detergent. Chemistry and Biology, 2004, 11, 1573-1582.	6.2	23
142	Macrolactamization of Glycosylated Peptide Thioesters by the Thioesterase Domain of Tyrocidine Synthetase. Chemistry and Biology, 2004, 11, 1635-1642.	6.2	42
143	A Chemoenzymatic Approach to Glycopeptide Antibiotics. Journal of the American Chemical Society, 2004, 126, 13998-14003.	6.6	148
144	Directed Evolution of a Glycosynthase via Chemical Complementation. Journal of the American Chemical Society, 2004, 126, 15051-15059.	6.6	99

#	Article	IF	CITATIONS
145	Screening and Selection Methods for Large-Scale Analysis of Protein Function. ChemInform, 2003, 34, no.	0.1	0
146	Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proceedings of the United States of America, 2003, 100, 6353-6357.	3.3	184
147	Chemical complementation: A reaction-independent genetic assay for enzyme catalysis. Proceedings of the United States of America, 2002, 99, 16537-16542.	3.3	92
148	Screening- und Selektionsmethoden fÃ1⁄4r die Analyse von Proteinfunktionen in großem Maßstab. Angewandte Chemie, 2002, 114, 4580-4606.	1.6	15
149	Screening and Selection Methods for Large-Scale Analysis of Protein Function. Angewandte Chemie - International Edition, 2002, 41, 4402-4425.	7.2	115
150	Receptor-Dependence of the Transcription Read-Out in a Small-Molecule Three-Hybrid System. ChemBioChem, 2002, 3, 887-895.	1.3	36
151	In Vivo Protein-Protein Interaction Assays: Beyond Proteins. Angewandte Chemie - International Edition, 2001, 40, 871-875.	7.2	23
152	Polyploids require Bik1 for kinetochore–microtubule attachment. Journal of Cell Biology, 2001, 155, 1173-1184.	2.3	98
153	In Vivo Protein-Protein Interaction Assays: Beyond Proteins We would like to thank Tony Siu, Dr. Charles Cho, and the members of our lab for their helpful comments as we were preparing this manuscript Angewandte Chemie - International Edition, 2001, 40, 871-875.	7.2	4
154	Dexamethasoneâ^'Methotrexate:  An Efficient Chemical Inducer of Protein Dimerization In Vivo. Journal of the American Chemical Society, 2000, 122, 4247-4248.	6.6	97
155	Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature, 1995, 376, 263-267.	13.7	603
156	Expression of recombinant genes in myocardium in vivo after direct injection of DNA Circulation, 1990, 82, 2217-2221.	1.6	372
157	Yeast n-Hybrid Systems for Molecular Evolution. , 0, , 127-158.		0
158	Reply to Comment on "Binding Affinity Determines Substrate Specificity and Enables Discovery of substrates for N-Myristoyltransferases― ACS Catalysis, 0, , 8829-8832.	5.5	1