
Qingqing Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/251653/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nature Nanotechnology, 2022, 17, 278-284.	31.5	24
2	Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
3	Anomalous heavy doping in chemical-vapor-deposited titanium trisulfide nanostructures. Physical Review Materials, 2021, 5, .	2.4	3
4	Revealing the BrÃ,nsted-Evans-Polanyi relation in halide-activated fast MoS ₂ growth toward millimeter-sized 2D crystals. Science Advances, 2021, 7, eabj3274.	10.3	18
5	Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection. Journal of Hazardous Materials, 2020, 384, 120978.	12.4	76
6	Enhancement of van der Waals Interlayer Coupling through Polar Janus MoSSe. Journal of the American Chemical Society, 2020, 142, 17499-17507.	13.7	80
7	Chirality-Dependent Second Harmonic Generation of MoS ₂ Nanoscroll with Enhanced Efficiency. ACS Nano, 2020, 14, 13333-13342.	14.6	34
8	Direct Observation of Symmetry-Dependent Electron–Phonon Coupling in Black Phosphorus. Journal of the American Chemical Society, 2019, 141, 18994-19001.	13.7	21
9	Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3437-3442.	7.1	46
10	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nature Catalysis, 2018, 1, 326-331.	34.4	61
11	Recent progress in the tailored growth of two-dimensional hexagonal boron nitride <i>via</i> chemical vapour deposition. Chemical Society Reviews, 2018, 47, 4242-4257.	38.1	107
12	Crumpled graphene prepared by a simple ultrasonic pyrolysis method for fast photodetection. Carbon, 2018, 128, 117-124.	10.3	19
13	In Situ-Generated Volatile Precursor for CVD Growth of a Semimetallic 2D Dichalcogenide. ACS Applied Materials & Interfaces, 2018, 10, 34401-34408.	8.0	23
14	Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides. Journal of the American Chemical Society, 2018, 140, 12354-12358.	13.7	85
15	Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coordination Chemistry Reviews, 2018, 376, 1-19.	18.8	49
16	Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route. Nano Research, 2017, 10, 2761-2771.	10.4	13
17	Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS ₂ / <i>h</i> -BN van der Waals Heterostructures on Au Foils. ACS Nano, 2017, 11, 4328-4336.	14.6	87
18	Vanadium Diselenide Single Crystals: Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extraâ€High Electrical Conductivity (Adv. Mater. 37/2017). Advanced Materials, 2017, 29, .	21.0	26

Qingqing Ji

#	Article	IF	CITATIONS
19	Tuning Excitonic Properties of Monolayer MoS ₂ with Microsphere Cavity by Highâ€Throughput Chemical Vapor Deposition Method. Small, 2017, 13, 1701694.	10.0	35
20	Metallic Vanadium Disulfide Nanosheets as a Platform Material for Multifunctional Electrode Applications. Nano Letters, 2017, 17, 4908-4916.	9.1	230
21	Anomalous Hall effect and magnetic orderings in nanothick <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">V<mml:mn>5</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">S<mml:mn>8</mml:mn></mml:mi </mml:msub></mml:mrow>.</mml:math 	3.2	43
22	Physical Meview 6, 2017,796, Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extraâ€High Electrical Conductivity. Advanced Materials, 2017, 29, 1702359.	21.0	191
23	Substrate effect on the growth of monolayer dendritic MoS ₂ on LaAlO ₃ (100) and its electrocatalytic applications. 2D Materials, 2016, 3, 035001.	4.4	22
24	Monolayer MoS ₂ Dendrites on a Symmetryâ€Disparate SrTiO ₃ (001) Substrate: Formation Mechanism and Interface Interaction. Advanced Functional Materials, 2016, 26, 3299-3305.	14.9	62
25	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	19.5	43
26	Graphene Heterostructures: Recent Advances in Controlling Syntheses and Energy Related Applications of MX2and MX2/Graphene Heterostructures (Adv. Energy Mater. 17/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
27	Temperatureâ€Mediated Selective Growth of MoS ₂ /WS ₂ and WS ₂ /MoS ₂ Vertical Stacks on Au Foils for Direct Photocatalytic Applications. Advanced Materials, 2016, 28, 10664-10672.	21.0	188
28	Transition Metal Dichalcogenides: Morphological Engineering of CVDâ€Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution (Adv. Mater. 29/2016). Advanced Materials, 2016, 28, 6020-6020.	21.0	1
29	Modulating the Electronic Properties of Monolayer Graphene Using a Periodic Quasi-One-Dimensional Potential Generated by Hex-Reconstructed Au(001). ACS Nano, 2016, 10, 7550-7557.	14.6	18
30	Narrowâ€Gap Quantum Wires Arising from the Edges of Monolayer MoS ₂ Synthesized on Graphene. Advanced Materials Interfaces, 2016, 3, 1600332.	3.7	30
31	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	12.8	93
32	Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna. Scientific Reports, 2016, 6, 23626.	3.3	43
33	Morphological Engineering of CVDâ€Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2016, 28, 6207-6212.	21.0	58
34	Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction. Nano Research, 2016, 9, 249-259.	10.4	24
35	An ultrafast terahertz probe of the transient evolution of the charged and neutral phase of photo-excited electron-hole gas in a monolayer semiconductor. 2D Materials, 2016, 3, 014001.	4.4	18
36	Periodic Modulation of the Doping Level in Striped MoS ₂ Superstructures. ACS Nano, 2016, 10, 3461-3468.	14.6	37

Qincqing Ji

#	Article	IF	CITATIONS
37	Molybdenum Disulfide: Kinetic Nature of Grain Boundary Formation in As-Grown MoS2 Monolayers (Adv. Mater. 27/2015). Advanced Materials, 2015, 27, 3974-3974.	21.0	4
38	All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS ₂ /Graphene Heterostructures. Advanced Materials, 2015, 27, 7086-7092.	21.0	132
39	Kinetic Nature of Grain Boundary Formation in Asâ€Grown MoS ₂ Monolayers. Advanced Materials, 2015, 27, 4069-4074.	21.0	130
40	Substrate Facet Effect on the Growth of Monolayer MoS ₂ on Au Foils. ACS Nano, 2015, 9, 4017-4025.	14.6	97
41	Monolayer Films: Monolayer MoS2Growth on Au Foils and On-Site Domain Boundary Imaging (Adv.) Tj ETQq1 1).784314 14.9	rgBT /Overlo
42	Uniform single-layer graphene growth on recyclable tungsten foils. Nano Research, 2015, 8, 592-599.	10.4	18
43	Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Research, 2015, 8, 2881-2890.	10.4	91
44	Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nature Communications, 2015, 6, 6835.	12.8	191
45	A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015, 8, 3662-3672.	10.4	94
46	Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8, 3496-3504.	10.4	112
47	Monolayer MoS ₂ Growth on Au Foils and On‣ite Domain Boundary Imaging. Advanced Functional Materials, 2015, 25, 842-849.	14.9	66
48	Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS ₂ Domains on Sapphire. Nano Letters, 2015, 15, 198-205.	9.1	136
49	Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews, 2015, 44, 2587-2602.	38.1	334
50	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nano, 2014, 8, 8617-8624.	14.6	158
51	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	14.6	404
52	Highâ€Quality Monolayer Graphene Synthesis on Pd Foils via the Suppression of Multilayer Growth at Grain Boundaries. Small, 2014, 10, 4003-4011.	10.0	16
53	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	9.1	512
54	Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Research. 2013. 6. 671-678.	10.4	35

Qingqing Ji

#	Article	IF	CITATIONS
55	Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Research, 2013, 6, 887-896.	10.4	22
56	Controlled Growth of High-Quality Monolayer WS ₂ Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013, 7, 8963-8971.	14.6	696
57	Single and Polycrystalline Graphene on Rh(111) Following Different Growth Mechanisms. Small, 2013, 9, 1360-1366.	10.0	21
58	Graphene: Single and Polycrystalline Graphene on Rh(111) Following Different Growth Mechanisms (Small 8/2013). Small, 2013, 9, 1359-1359.	10.0	3
59	Thinning Segregated Graphene Layers on High Carbon Solubility Substrates of Rhodium Foils by Tuning the Quenching Process. ACS Nano, 2012, 6, 10581-10589.	14.6	61
60	Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy. ACS Nano, 2011, 5, 4014-4022.	14.6	186