Hua Kun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2516123/publications.pdf

Version: 2024-02-01

1,008 papers

69,668 citations

135 h-index 208 g-index

1027 all docs

1027 docs citations

1027 times ranked 40486 citing authors

#	Article	IF	CITATIONS
1	Hierarchical Encapsulation and Rich sp ² N Assist <scp>Sb₂Se₃â€Based Conversionâ€Alloying</scp> Anode for <scp>Longâ€Life</scp> Sodiumâ€∙and Potassiumâ€lon Storage. Energy and Environmental Materials, 2023, 6, .	12.8	24
2	Novel Li ₃ VO ₄ Nanostructures Grown in Highly Efficient Microwave Irradiation Strategy and Their In‧itu Lithium Storage Mechanism. Advanced Science, 2022, 9, e2103493.	11.2	23
3	The Emerging Electrochemical Activation Tactic for Aqueous Energy Storage: Fundamentals, Applications, and Future. Advanced Functional Materials, 2022, 32, .	14.9	34
4	Electrolytes/Interphases: Enabling Distinguishable Sulfur Redox Processes in Roomâ€Temperature Sodiumâ€Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	19.5	29
5	Continuous Carbon Channels Enable Full Naâ€lon Accessibility for Superior Roomâ€Temperature Na–S Batteries. Advanced Materials, 2022, 34, e2108363.	21.0	49
6	Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Nano Letters, 2022, 22, 1302-1310.	9.1	68
7	Streamline Sulfur Redox Reactions to Achieve Efficient Roomâ€√emperature Sodium–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
8	Streamline Sulfur Redox Reactions to Achieve Efficient Roomâ€√emperature Sodium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	2.0	3
9	Regulating the Electronic Configuration of Supported Iron Nanoparticles for Electrochemical Catalytic Nitrogen Fixation. Advanced Functional Materials, 2022, 32, .	14.9	16
10	Prussian Blue Analogues for Sodiumâ€ion Batteries: Past, Present, and Future. Advanced Materials, 2022, 34, e2108384.	21.0	252
11	Recent Progress on Feâ€Based Single/Dualâ€Atom Catalysts for Zn–Air Batteries. Small, 2022, 18, e2106635.	10.0	47
12	Effect of Eliminating Water in Prussian Blue Cathode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	66
13	The typical structural evolution of silicon anode. Cell Reports Physical Science, 2022, 3, 100811.	5.6	10
14	Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na–S Batteries. ACS Nano, 2022, 16, 5103-5130.	14.6	27
15	Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage. Journal of Materials Science and Technology, 2022, 119, 167-181.	10.7	26
16	Nitrogen and Oxygen Coâ€Doped Porous Hard Carbon Nanospheres with Coreâ€Shell Architecture as Anode Materials for Superior Potassiumâ€ion Storage. Small, 2022, 18, e2104296.	10.0	33
17	CoS ₂ Nanoparticles Anchored on MoS ₂ Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li ₂ O ₂ Heteroepitaxial Growth for Rechargeable Liâ€O ₂ Batteries. Small, 2022, 18, e2105752.	10.0	20
18	An in-situ generated Bi-based sodiophilic substrate with high structural stability for high-performance sodium metal batteries. Journal of Energy Chemistry, 2022, 71, 595-603.	12.9	7

#	Article	IF	CITATIONS
19	Stable sodium metal anodes enabled by an in-situ generated mixed-ion/electron-conducting interface. Chemical Engineering Journal, 2022, 446, 136917.	12.7	5
20	Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture. National Science Review, 2021, 8, nwaa152.	9.5	77
21	Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries. Journal of Materials Science and Technology, 2021, 68, 140-146.	10.7	20
22	Efficient separators with fast Li-ion transfer and high polysulfide entrapment for superior lithium-sulfur batteries. Chemical Engineering Journal, 2021, 408, 127348.	12.7	25
23	Sustainable S cathodes with synergic electrocatalysis for room-temperature Na–S batteries. Journal of Materials Chemistry A, 2021, 9, 566-574.	10.3	39
24	Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. Nano Letters, 2021, 21, 619-627.	9.1	58
25	Li ₂ Sâ€Based Liâ€lon Sulfur Batteries: Progress and Prospects. Small, 2021, 17, e1903934.	10.0	41
26	An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. Journal of Materials Chemistry A, 2021, 9, 4253-4261.	10.3	67
27	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	30.8	314
28	Stable sodium metal anodes with a high utilization enabled by an interfacial layer composed of yolkâ€"shell nanoparticles. Journal of Materials Chemistry A, 2021, 9, 13200-13208.	10.3	21
29	Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. ACS Nano, 2021, 15, 2197-2218.	14.6	192
30	Tunable Electrocatalytic Behavior of Sodiated MoS ₂ Active Sites toward Efficient Sulfur Redox Reactions in Roomâ€Temperature Naâ€"S Batteries. Advanced Materials, 2021, 33, e2100229.	21.0	66
31	Bi Nanoparticles Embedded in 2D Carbon Nanosheets as an Interfacial Layer for Advanced Sodium Metal Anodes. Small, 2021, 17, e2007578.	10.0	28
32	Facile Fabrication of Ag Nanocrystals Encapsulated in Nitrogenâ€doped Fibrous Carbon as an Efficient Catalyst for Lithium Oxygen Batteries. Energy and Environmental Materials, 2021, 4, 239-245.	12.8	20
33	An Emerging Energy Storage System: Advanced Na–Se Batteries. ACS Nano, 2021, 15, 5876-5903.	14.6	56
34	Carbonaceous Hosts for Sulfur Cathode in Alkaliâ∈Metal/S (Alkali Metal = Lithium, Sodium, Potassium) Batteries. Small, 2021, 17, e2006504.	10.0	17
35	Atomic Cobalt Vacancyâ€Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2101797.	14.9	26
36	Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na–S Batteries. Nano-Micro Letters, 2021, 13, 121.	27.0	31

#	Article	IF	Citations
37	Atomic Structural Evolution of Singleâ€Layer Pt Clusters as Efficient Electrocatalysts. Small, 2021, 17, e2100732.	10.0	26
38	Architecting Freestanding Sulfur Cathodes for Superior Roomâ€√emperature Na–S Batteries. Advanced Functional Materials, 2021, 31, 2102280.	14.9	46
39	Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li–S Batteries. ACS Applied Materials & Density Li—S Batteries. ACS Applied Materials & Density Li–S Batteries. ACS Applied Materials & Density Li—S Batteries. ACS Applied Materials & Density Li–S Batteries. ACS Applied Materials & Density Li—S Batteries. ACS Applied Materials & Density Li⧠Batteries. ACS Applied Materials & Density Li⧠Batteries. ACS Applied Materials & Density Li⧠Batteries. ACS Applied Materials & Dens	8.0	19
40	Accelerated Polysulfide Redox in Binderâ€Free Li ₂ S Cathodes Promises Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100957.	19.5	35
41	Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4, 1768-1800.	10.0	39
42	Dendritesâ€Free Zn Metal Anodes Enabled by an Artificial Protective Layer Filled with 2D Anionic Nanosheets. Small Methods, 2021, 5, e2100650.	8.6	50
43	Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries. Cell Reports Physical Science, 2021, 2, 100539.	5.6	20
44	Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Reports Physical Science, 2021, 2, 100531.	5.6	31
45	Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan. Energy Storage Materials, 2021, 39, 54-59.	18.0	11
46	Recent Advances and Perspective on Electrochemical Ammonia Synthesis under Ambient Conditions. Small Methods, 2021, 5, e2100460.	8.6	33
47	Red phosphorus: A rising star of anode materials for advanced K-ion batteries. Energy Storage Materials, 2021, 42, 193-208.	18.0	22
48	Coupling effects of thermodynamics in multiple ion co-precipitation for precursors towards a layered oxide cathode. Materials Advances, 2021, 2, 3752-3759.	5.4	1
49	Copper phosphide as a promising anode material for potassium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 8378-8385.	10.3	16
50	Progress and Challenges for Allâ€Solidâ€State Sodium Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000057.	5.8	49
51	Activating Inert Surface Pt Single Atoms via Subsurface Doping for Oxygen Reduction Reaction. Nano Letters, 2021, 21, 7970-7978.	9.1	33
52	Processing Rusty Metals into Versatile Prussian Blue for Sustainable Energy Storage. Advanced Energy Materials, 2021, 11, 2102356.	19.5	41
53	The Dual Functions of Defectâ€Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for LiS Batteries. Small, 2021, 17, e2103535.	10.0	23
54	Highly Stable Lithium/Sodium Metal Batteries with High Utilization Enabled by a Holey Two-Dimensional N-Doped TiNb ₂ O ₇ Host. Nano Letters, 2021, 21, 10453-10461.	9.1	18

#	Article	IF	Citations
55	Remedies for Polysulfide Dissolution in Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Materials, 2020, 32, e1903952.	21.0	96
56	Anode Materials: Realizing Reversible Conversionâ€Alloying of Sb(V) in Polyantimonic Acid for Fast and Durable Lithium―and Potassiumâ€Ion Storage (Adv. Energy Mater. 1/2020). Advanced Energy Materials, 2020, 10, 2070002.	19.5	1
57	Uniform Polypyrrole Layer-Coated Sulfur/Graphene Aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li–S Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5958-5967.	8.0	29
58	An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 2969-2983.	10.3	59
59	Realizing Reversible Conversionâ€Alloying of Sb(V) in Polyantimonic Acid for Fast and Durable Lithium― and Potassiumâ€Ion Storage. Advanced Energy Materials, 2020, 10, 1903119.	19.5	57
60	Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate. Advanced Energy Materials, 2020, 10, 1903006.	19.5	67
61	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€S Batteries. Angewandte Chemie - International Edition, 2020, 59, 22171-22178.	13.8	80
62	Multiregion Janus-Featured Cobalt Phosphide-Cobalt Composite for Highly Reversible Room-Temperature Sodium-Sulfur Batteries. ACS Nano, 2020, 14, 10284-10293.	14.6	81
63	Electron Delocalization and Dissolutionâ€Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2001852.	19.5	125
64	Confining Ultrathin 2D Superlattices in Mesoporous Hollow Spheres Renders Ultrafast and Highâ€Capacity Naâ€lon Storage. Advanced Energy Materials, 2020, 10, 2001033.	19.5	25
65	Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density. ACS Nano, 2020, 14, 9807-9818.	14.6	116
66	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Na‧ Batteries. Angewandte Chemie, 2020, 132, 22355-22362.	2.0	62
67	Confined Fe–Cu Clusters as Subâ€Nanometer Reactors for Efficiently Regulating the Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 2020, 32, e2004382.	21.0	152
68	Solid Electrolyte Interphases on Sodium Metal Anodes. Advanced Functional Materials, 2020, 30, 2004891.	14.9	154
69	Alkaliâ€Metal Sulfide as Cathodes toward Safe and Highâ€Capacity Metal (M = Li, Na, K) Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001764.	19.5	29
70	Tailoring MXene-Based Materials for Sodium-Ion Storage: Synthesis, Mechanisms, and Applications. Electrochemical Energy Reviews, 2020, 3, 766-792.	25.5	86
71	Porous quasi-graphitic carbon sheets for unprecedented sodium storage. Inorganic Chemistry Frontiers, 2020, 7, 2443-2450.	6.0	1
72	Core–Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes. Nano Letters, 2020, 20, 4464-4471.	9.1	75

#	Article	IF	CITATIONS
73	Sodium–Sulfur Batteries: Remedies for Polysulfide Dissolution in Roomâ€Temperature Sodium–Sulfur Batteries (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070145.	21.0	2
74	Heterostructured Mo2C–MoO2 as highly efficient catalyst for rechargeable Li–O2 battery. Journal of Power Sources, 2020, 470, 228317.	7.8	23
75	Anodic Oxidation Strategy toward Structure-Optimized V ₂ O ₃ Cathode <i>via</i> Electrolyte Regulation for Zn-Ion Storage. ACS Nano, 2020, 14, 7328-7337.	14.6	229
76	Mesoporous Nitrogenâ€Doped Carbon Nanospheres as Sulfur Matrix and a Novel Chelateâ€Modified Separator for Highâ€Performance Roomâ€Temperature Naâ€S Batteries. Small, 2020, 16, e1907464.	10.0	57
77	Interfacial and Electronic Modulation via Localized Sulfurization for Boosting Lithium Storage Kinetics. Advanced Materials, 2020, 32, e2000151.	21.0	98
78	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€ion Batteries. Angewandte Chemie, 2020, 132, 12174-12181.	2.0	20
79	Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Materials, 2020, 28, 122-145.	18.0	413
80	Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11 , 980.	12.8	283
81	Super Kinetically Pseudocapacitive MnCo ₂ S ₄ Nanourchins toward Highâ€Rate and Highly Stable Sodiumâ€Ion Storage. Advanced Functional Materials, 2020, 30, 1909702.	14.9	47
82	A Highâ€Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Roomâ€Temperature Na–S Batteries. Advanced Materials, 2020, 32, e1906700.	21.0	126
83	Dendriteâ€Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolateâ€Rich Protection Layer. Angewandte Chemie - International Edition, 2020, 59, 6596-6600.	13.8	89
84	Dendriteâ€Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolateâ€Rich Protection Layer. Angewandte Chemie, 2020, 132, 6658-6662.	2.0	33
85	Self-assembling RuO ₂ nanogranulates with few carbon layers as an interconnected nanoporous structure for lithium–oxygen batteries. Chemical Communications, 2020, 56, 7253-7256.	4.1	5
86	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12076-12083.	13.8	78
87	Three-Dimensional Electronic Network Assisted by TiN Conductive Pillars and Chemical Adsorption to Boost the Electrochemical Performance of Red Phosphorus. ACS Nano, 2020, 14, 4609-4617.	14.6	31
88	Enhanced Potassium Ion Battery by Inducing Interlayer Anionic Ligands in MoS _{1.5} Se _{0.5} Nanosheets with Exploration of the Mechanism. Advanced Energy Materials, 2020, 10, 1904162.	19.5	48
89	A conductive polymer derived N-doped carbon nanofiber supported Li2S coating layer for Li–S batteries with high mass loading. Journal of Alloys and Compounds, 2020, 828, 154264.	5.5	9
90	Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Storage Materials, 2020, 30, 42-51.	18.0	62

#	Article	IF	Citations
91	Electrocatalyzing S Cathodes <i>via</i> Multisulfiphilic Sites for Superior Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2020, 14, 7259-7268.	14.6	100
92	Surface Stabilization of O3-type Layered Oxide Cathode to Protect the Anode of Sodium Ion Batteries for Superior Lifespan. IScience, 2019, 19, 244-254.	4.1	29
93	Everlasting Living and Breathing Gyroid 3D Network in Si@SiOx/C Nanoarchitecture for Lithium Ion Battery. ACS Nano, 2019, 13, 9607-9619.	14.6	165
94	Bio-Derived Hierarchical Multicore–Shell Fe2N-Nanoparticle-Impregnated N-Doped Carbon Nanofiber Bundles: A Host Material for Lithium-/Potassium-Ion Storage. Nano-Micro Letters, 2019, 11, 56.	27.0	47
95	A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 18126-18134.	10.3	32
96	Binderâ€Free 3D Integrated Ni@Ni 3 Pt Air Electrode for Zn–Air Batteries. Global Challenges, 2019, 3, 1900027.	3.6	11
97	Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation. Nature Chemistry, 2019, 11, 695-701.	13.6	86
98	Catalytic Activity Boosting of Nickel Sulfide toward Oxygen Evolution Reaction via Confined Overdoping Engineering. ACS Applied Energy Materials, 2019, 2, 5363-5372.	5.1	48
99	Metallicâ€State SnS 2 Nanosheets with Expanded Lattice Spacing for Highâ€Performance Sodiumâ€Ion Batteries. ChemSusChem, 2019, 12, 4046-4053.	6.8	30
100	Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy, 2019, 63, 103868.	16.0	153
101	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO ₂ Quantum Dots for Exceptional Sodiumâ€lon Storage. Angewandte Chemie - International Edition, 2019, 58, 14125-14128.	13.8	47
102	Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin. ACS Nano, 2019, 13, 12219-12229.	14.6	119
103	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO 2 Quantum Dots for Exceptional Sodiumâ€ion Storage. Angewandte Chemie, 2019, 131, 14263-14266.	2.0	13
104	Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for Li–CO ₂ Batteries. Advanced Functional Materials, 2019, 29, 1904206.	14.9	86
105	Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nature Communications, 2019, 10, 4793.	12.8	147
106	Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction. Journal of Materials Chemistry A, 2019, 7, 22242-22247.	10.3	109
107	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€6torage Performance. Angewandte Chemie, 2019, 131, 4062-4066.	2.0	11
108	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€Storage Performance. Angewandte Chemie - International Edition, 2019, 58, 4022-4026.	13.8	56

#	Article	IF	Citations
109	General Ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 11868-11873.	13.8	229
110	General Ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie, 2019, 131, 11994-11999.	2.0	28
111	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	12.2	79
112	Exploration of the sodium ion ordered transfer mechanism in a MoSe ₂ @Graphene composite for superior rate and lifespan performance. Journal of Materials Chemistry A, 2019, 7, 13736-13742.	10.3	23
113	Strategies Toward Stable Nonaqueous Alkali Metal–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1900464.	19.5	35
114	Energy storage in Oceania. Energy Storage Materials, 2019, 20, 176-187.	18.0	20
115	<i>In situ</i> incorporation of nanostructured antimony in an N-doped carbon matrix for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12842-12850.	10.3	25
116	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie, 2019, 131, 6741-6745.	2.0	16
117	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie - International Edition, 2019, 58, 6669-6673.	13.8	209
118	Constructing the best symmetric full K-ion battery with the NASICON-type K3V2(PO4)3. Nano Energy, 2019, 60, 432-439.	16.0	67
119	Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 2019, 15, e1900470.	10.0	226
120	Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Advanced Materials, 2019, 31, e1804587.	21.0	254
121	The Quasiâ€Ptâ€Allotrope Catalyst: Hollow PtCo@singleâ€Atom Pt ₁ on Nitrogenâ€Doped Carbon toward Superior Oxygen Reduction. Advanced Functional Materials, 2019, 29, 1807340.	14.9	97
122	Fabrication of Superior Singleâ€Atom Catalysts toward Diverse Electrochemical Reactions. Small Methods, 2019, 3, 1800497.	8.6	99
123	Metallic state two-dimensional holey-structured Co ₃ FeN nanosheets as stable and bifunctional electrocatalysts for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 26549-26556.	10.3	30
124	Interpreting Abnormal Charge–Discharge Plateau Migration in CuxS during Long-Term Cycling. ACS Applied Materials & Company (1997) (1	8.0	31
125	Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 5373-5379.	8.0	78
126	Borohydrideâ€Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solidâ€State Electrolytes. Advanced Materials, 2019, 31, e1803533.	21.0	105

#	Article	IF	Citations
127	Synthesis of methotrexate-loaded tantalum pentoxide–poly(acrylic acid) nanoparticles for controlled drug release applications. Journal of Colloid and Interface Science, 2019, 538, 286-296.	9.4	34
128	Graphene-scroll-sheathed \hat{l} ±-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Materials, 2019, 16, 46-55.	18.0	136
129	Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems, 2018, 2, 1700183.	5.3	46
130	Synthesis and electrochemical properties of NH 4 FePO 4 \hat{A} ·H 2 O as a novel anode material. Materials Letters, 2018, 225, 69-72.	2.6	6
131	A high rate capability and long lifespan symmetric sodium-ion battery system based on a bipolar material Na ₂ LiV ₂ (PO ₄) ₃ /C. Journal of Materials Chemistry A, 2018, 6, 9962-9970.	10.3	38
132	An Integrated Freeâ€Standing Flexible Electrode with Holeyâ€Structured 2D Bimetallic Phosphide Nanosheets for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1801016.	14.9	59
133	Remarkable Enhancement in Sodium″on Kinetics of NaFe ₂ (CN) ₆ by Chemical Bonding with Graphene. Small Methods, 2018, 2, 1700346.	8.6	40
134	Preface for "Lithium ion batteries and beyond― APL Materials, 2018, 6, 047401.	5.1	1
135	Structural design of anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6183-6205.	10.3	127
136	Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Materials, 2018, 13, 312-322.	18.0	105
137	Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 3284-3303.	10.3	224
138	A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries. Journal of Power Sources, 2018, 379, 10-19.	7.8	48
139	Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 5382-5390.	11.2	311
140	High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. Journal of Materials Chemistry A, 2018, 6, 9723-9736.	10.3	212
141	Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Materials, 2018, 15, 22-30.	18.0	125
142	Metal-oxygen bonds: Stabilizing the intermediate species towards practical Li-air batteries. Electrochimica Acta, 2018, 259, 313-320.	5.2	12
143	Hybrids of Fe3O4/CoSe2 as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Science, 2018, 53, 1123-1134.	3.7	7
144	High Energy Density Sodiumâ€lon Battery with Industrially Feasible and Airâ€Stable O3â€Type Layered Oxide Cathode. Advanced Energy Materials, 2018, 8, 1701610.	19.5	161

#	Article	IF	Citations
145	Sodiumâ€lon Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 2018, 8, 1701428.	19.5	494
146	Tubular TiO ₂ Nanostructures: Toward Safer Microsupercapacitors. Advanced Materials Technologies, 2018, 3, 1700194.	5.8	9
147	A Comprehensive Review on Controlling Surface Composition of Ptâ€Based Bimetallic Electrocatalysts. Advanced Energy Materials, 2018, 8, 1703597.	19.5	123
148	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nature Communications, 2018, 9, 4082.	12.8	305
149	Lithium Storage: 3D Selenium Sulfide@Carbon Nanotube Array as Long-Life and High-Rate Cathode Material for Lithium Storage (Adv. Funct. Mater. 43/2018). Advanced Functional Materials, 2018, 28, 1870310.	14.9	1
150	3D Selenium Sulfide@Carbon Nanotube Array as Longâ€Life and Highâ€Rate Cathode Material for Lithium Storage. Advanced Functional Materials, 2018, 28, 1805018.	14.9	34
151	Ultrathin and Edge-Enriched Holey Nitride Nanosheets as Bifunctional Electrocatalysts for the Oxygen and Hydrogen Evolution Reactions. ACS Catalysis, 2018, 8, 9686-9696.	11.2	71
152	Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nature Communications, 2018, 9, 3645.	12.8	204
153	High toxicity of Bi(OH)3 and α-Bi2O3 nanoparticles towards malignant 9L and MCF-7 cells. Materials Science and Engineering C, 2018, 93, 958-967.	7.3	15
154	Biocompatible Bi(OH)3 nanoparticles with reduced photocatalytic activity as possible ultraviolet filter in sunscreens. Materials Research Bulletin, 2018, 108, 130-141.	5.2	19
155	Engineering Highâ€Performance MoO ₂ â€Based Nanomaterials with Supercapacity and Superhydrophobicity by Tuning the Raw Materials Source. Small, 2018, 14, e1800480.	10.0	32
156	Self-Assembling Hollow Carbon Nanobeads into Double-Shell Microspheres as a Hierarchical Sulfur Host for Sustainable Room-Temperature Sodium–Sulfur Batteries. ACS Applied Materials & Discrete Rome, Interfaces, 2018, 10, 20422-20428.	8.0	65
157	TiO ₂ /(BiO) ₂ CO ₃ nanocomposites for ultraviolet filtration with reduced photocatalytic activity. Journal of Materials Chemistry C, 2018, 6, 5639-5650.	5.5	12
158	A novel high voltage battery cathodes of Fe 2+ /Fe 3+ sodium fluoro sulfate lined with carbon nanotubes for stable sodium batteries. Journal of Power Sources, 2018, 398, 175-182.	7.8	14
159	Interwoven V ₂ O ₅ nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 19358-19370.	10.3	86
160	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10, 1268-1281.	10.4	43
161	Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries. Nano Energy, 2017, 33, 205-212.	16.0	54
162	Carbon- and binder-free 3D porous perovskite oxide air electrode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 5283-5289.	10.3	49

#	Article	IF	CITATIONS
163	Improved Reversibility of Fe ³⁺ /Fe ⁴⁺ Redox Couple in Sodium Super Ion Conductor Type Na ₃ Fe ₂ (PO ₄) ₃ for Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605694.	21.0	169
164	Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 5290-5302.	10.3	118
165	Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries. Journal of Materials Chemistry A, 2017, 5, 1925-1929.	10.3	24
166	Three-Dimensional Array of TiN@Pt ₃ Cu Nanowires as an Efficient Porous Electrode for the Lithium–Oxygen Battery. ACS Nano, 2017, 11, 1747-1754.	14.6	46
167	Feasibility of Cathode Surface Coating Technology for Highâ€Energy Lithiumâ€ion and Beyondâ€Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605807.	21.0	168
168	Highly active Fe ₃ BO ₆ as an anode material for sodium-ion batteries. Chemical Communications, 2017, 53, 4698-4701.	4.1	30
169	Atomic Interface Engineering and Electricâ€Field Effect in Ultrathin Bi ₂ MoO ₆ Nanosheets for Superior Lithium Ion Storage. Advanced Materials, 2017, 29, 1700396.	21.0	343
170	Functional membrane separators for next-generation high-energy rechargeable batteries. National Science Review, 2017, 4, 917-933.	9.5	89
171	Mo ₂ C/CNT: An Efficient Catalyst for Rechargeable Li–CO ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700564.	14.9	236
172	High energy density of Li $3\hat{a}^2$ x Na x V 2 (PO 4) 3 /C cathode material with high rate cycling performance for lithium-ion batteries. Journal of Power Sources, 2017, 357, 117-125.	7.8	17
173	Investigation of Promising Air Electrode for Realizing Ultimate Lithium Oxygen Battery. Advanced Energy Materials, 2017, 7, 1700234.	19.5	44
174	Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries. Green Energy and Environment, 2017, 2, 278-284.	8.7	75
175	Structure–Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance. Advanced Materials, 2017, 29, 1700449.	21.0	96
176	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	10.3	50
177	Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)â€lon Batteries. Advanced Science, 2017, 4, 1700146.	11.2	390
178	Unique Structural Design and Strategies for Germaniumâ€Based Anode Materials Toward Enhanced Lithium Storage. Advanced Energy Materials, 2017, 7, 1700488.	19.5	103
179	Roomâ€Temperature Sodiumâ€Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry. Advanced Energy Materials, 2017, 7, 1602829.	19.5	270
180	A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12073-12079.	10.3	30

#	Article	IF	Citations
181	Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Materials Today, 2017, 20, 611-628.	14.2	96
182	Capillary-Induced Ge Uniformly Distributed in N-Doped Carbon Nanotubes with Enhanced Li-Storage Performance. Small, 2017, 13, 1700920.	10.0	27
183	Amorphous TiO ₂ Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for Highâ€Performance and Safe Lithium Storage. Advanced Materials, 2017, 29, 1700523.	21.0	342
184	Self-assembled porous carbon microparticles derived from halloysite clay as a lithium battery anode. Journal of Materials Chemistry A, 2017, 5, 7345-7354.	10.3	56
185	2D Layered Graphitic Carbon Nitride Sandwiched with Reduced Graphene Oxide as Nanoarchitectured Anode for Highly Stable Lithium-ion Battery. Electrochimica Acta, 2017, 237, 69-77.	5.2	51
186	Enhanced capacity and cycle life of nitrogen-doped activated charcoal anode for the lithium ion battery: a solvent-free approach. RSC Advances, 2017, 7, 16505-16512.	3.6	9
187	A new energy storage system: Rechargeable potassium-selenium battery. Nano Energy, 2017, 35, 36-43.	16.0	168
188	A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 6832-6839.	10.3	94
189	CoS Quantum Dot Nanoclusters for Highâ€Energy Potassiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1702634.	14.9	391
190	Carbon-Encapsulated Sn@N-Doped Carbon Nanotubes as Anode Materials for Application in SIBs. ACS Applied Materials & Discrete Applied & Discrete Ap	8.0	52
191	An Allâ€Integrated Anode via Interlinked Chemical Bonding between Doubleâ€Shelled–Yolkâ€Structured Silicon and Binder for Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1703028.	21.0	238
192	Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries. ACS Nano, 2017, 11, 9048-9056.	14.6	73
193	Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie, 2017, 129, 13978-13982.	2.0	8
194	Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie - International Edition, 2017, 56, 13790-13794.	13.8	39
195	Metalâ€Free Carbon Materials for CO ₂ Electrochemical Reduction. Advanced Materials, 2017, 29, 1701784.	21.0	558
196	Atomically Thin Transitionâ€Metal Dichalcogenides for Electrocatalysis and Energy Storage. Small Methods, 2017, 1, 1700156.	8.6	98
197	Commercial Prospects of Existing Cathode Materials for Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700274.	19.5	118
198	Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon, 2017, 123, 54-61.	10.3	257

#	Article	IF	Citations
199	Chevrel Phase Mo $<$ sub $>6sub>T<sub>8sub> (T = S, Se) as Electrodes for Advanced Energy Storage. Small, 2017, 13, 1701441.$	10.0	61
200	Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1700605.	21.0	39
201	A Flexible 3D Multifunctional MgOâ€Decorated Carbon Foam@CNTs Hybrid as Selfâ€Supported Cathode for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1702573.	14.9	169
202	In Situ Grown S Nanosheets on Cu Foam: An Ultrahigh Electroactive Cathode for Room-Temperature Na–S Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 24446-24450.	8.0	65
203	A 3D porous nitrogen-doped carbon-nanofiber-supported palladium composite as an efficient catalytic cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 1462-1471.	10.3	71
204	Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection. Advanced Materials, 2017, 29, 1603937.	21.0	63
205	Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction. International Journal of Hydrogen Energy, 2017, 42, 236-242.	7.1	29
206	Ultrathin Cobaltosic Oxide Nanosheets as an Effective Sulfur Encapsulation Matrix with Strong Affinity Toward Polysulfides. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4320-4325.	8.0	59
207	Rapid hydrothermal synthesis of Li3VO4 with different favored facets. Journal of Solid State Electrochemistry, 2017, 21, 2547-2553.	2.5	8
208	In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and Ultrafast Sodium Storage. Advanced Materials, 2017, 29, 1604708.	21.0	95
209	Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Research, 2017, 10, 4055-4081.	10.4	111
210	Long stable cycling of fluorine-doped nickel-rich layered cathodes for lithium batteries. Sustainable Energy and Fuels, 2017, 1, 1292-1298.	4.9	22
211	Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2016, 4, 36.	3.6	18
212	Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy, 2016, 27, 255-264.	16.0	204
213	Carbon- and crack-free growth of hexagonal boron nitride nanosheets and their uncommon stacking order. Nanoscale, 2016, 8, 15926-15933.	5.6	20
214	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	3.7	33
215	Boosted Charge Transfer in SnS/SnO ₂ Heterostructures: Toward High Rate Capability for Sodiumâ€ion Batteries. Angewandte Chemie, 2016, 128, 3469-3474.	2.0	116
216	Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodiumâ€ion Batteries. Advanced Materials Interfaces, 2016, 3, 1500464.	3.7	60

#	Article	IF	CITATIONS
217	Boosted Charge Transfer in SnS/SnO ₂ Heterostructures: Toward High Rate Capability for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2016, 55, 3408-3413.	13.8	621
218	Ammonium Aminodiboranate: A Longâ€Sought Isomer of Diammoniate of Diborane and Ammonia Borane Dimer. Chemistry - A European Journal, 2016, 22, 7727-7729.	3.3	15
219	Selfâ€Assembled 3D Foamâ€Like NiCo ₂ O ₄ as Efficient Catalyst for Lithium Oxygen Batteries. Small, 2016, 12, 602-611.	10.0	97
220	Graphiteâ€Nanoplateâ€Coated Bi ₂ S ₃ Composite with Highâ€Volume Energy Density and Excellent Cycle Life for Roomâ€Temperature Sodium–Sulfide Batteries. Chemistry - A European Journal, 2016, 22, 590-597.	3.3	48
221	Ultrathin Porous NiO Nanoflake Arrays on Nickel Foam as Binder-free Electrodes for Supercapacitors. Electrochemistry, 2016, 84, 219-223.	1.4	10
222	3-D structured SnO ₂ –polypyrrole nanotubes applied in Na-ion batteries. RSC Advances, 2016, 6, 103124-103131.	3.6	19
223	Si-containing precursors for Si-based anode materials of Li-ion batteries: A review. Energy Storage Materials, 2016, 4, 92-102.	18.0	79
224	Lyophilized 3D Lithium Vanadium Phosphate/Reduced Graphene Oxide Electrodes for Super Stable Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1501760.	19.5	47
225	A microwave autoclave synthesized MnO2/graphene composite as a cathode material for lithium–oxygen batteries. Journal of Applied Electrochemistry, 2016, 46, 869-878.	2.9	22
226	Corrigendum to "Rapid synthesis of Li4Ti5O12/grapheme composite with superior rate capability by a microwave-assisted hydrothermal method" [Nano Energy (2014) 8, 297–304]. Nano Energy, 2016, 30, 910.	16.0	0
227	Lithiumâ€lon Batteries: A Green and Facile Way to Prepare Granadillaâ€Like Siliconâ€Based Anode Materials for Liâ€lon Batteries (Adv. Funct. Mater. 3/2016). Advanced Functional Materials, 2016, 26, 468-468.	14.9	2
228	An improved synthesis of unsolvated NaB 3 H 8 and its application in preparing Na 2 B 12 H 12. International Journal of Hydrogen Energy, 2016, 41, 15471-15476.	7.1	19
229	Electrochemically active, novel layered m -ZnV 2 O 6 nanobelts for highly rechargeable Na-ion energy storage. Electrochimica Acta, 2016, 205, 62-69.	5.2	26
230	Self-monitoring and self-correcting polymer fibers coated with carbon nanotubes. Carbon, 2016, 109, 428-434.	10.3	7
231	A chemically modified graphene oxide wrapped porous hematite nano-architecture as a high rate lithium-ion battery anode material. RSC Advances, 2016, 6, 82698-82706.	3.6	12
232	Effects of substituting Cu for Sn on the microstructure and hydrogen absorption properties of Co-free AB5 alloys. International Journal of Hydrogen Energy, 2016, 41, 17022-17028.	7.1	17
233	Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vaporâ€Redistribution for Highâ€Energy Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1601037.	19.5	198
234	Symmetric Electrodes for Electrochemical Energyâ€Storage Devices. Advanced Science, 2016, 3, 1600115.	11.2	64

#	Article	IF	CITATIONS
235	Liquidâ€Crystalâ€Mediated Selfâ€Assembly of Porous αâ€Fe ₂ O ₃ Nanorods on PEDOT:PSSâ€Functionalized Graphene as a Flexible Ternary Architecture for Capacitive Energy Storage. Particle and Particle Systems Characterization, 2016, 33, 27-37.	2.3	22
236	Effects of Carbon Content on the Electrochemical Performances of MoS ₂ –C Nanocomposites for Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22168-22174.	8.0	46
237	Ternary Porous Sulfur/Dual-Carbon Architectures for Lithium/Sulfur Batteries Obtained Continuously and on a Large Scale via an Industry-Oriented Spray-Pyrolysis/Sublimation Method. ACS Applied Materials & Diterfaces, 2016, 8, 25251-25260.	8.0	15
238	Achieving High-Performance Room-Temperature Sodium–Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. Journal of the American Chemical Society, 2016, 138, 16576-16579.	13.7	280
239	Germanium Nanograin Decoration on Carbon Shell: Boosting Lithiumâ€5torage Properties of Silicon Nanoparticles. Advanced Functional Materials, 2016, 26, 7800-7806.	14.9	68
240	Nitrogenâ€Doped Graphene Ribbon Assembled Core–Sheath MnO@Graphene Scrolls as Hierarchically Ordered 3D Porous Electrodes for Fast and Durable Lithium Storage. Advanced Functional Materials, 2016, 26, 7754-7765.	14.9	245
241	General Synthesis of Transition Metal Oxide Ultrafine Nanoparticles Embedded in Hierarchically Porous Carbon Nanofibers as Advanced Electrodes for Lithium Storage. Advanced Functional Materials, 2016, 26, 6188-6196.	14.9	61
242	Nanoparticles: Germanium Nanograin Decoration on Carbon Shell: Boosting Lithium-Storage Properties of Silicon Nanoparticles (Adv. Funct. Mater. 43/2016). Advanced Functional Materials, 2016, 26, 7799-7799.	14.9	0
243	Silicon/Mesoporous Carbon/Crystalline TiO ₂ Nanoparticles for Highly Stable Lithium Storage. ACS Nano, 2016, 10, 10524-10532.	14.6	230
244	Chemically Bonded Sn Nanoparticles Using the Crosslinked Epoxy Binder for High Energyâ€Density Li Ion Battery. Advanced Materials Interfaces, 2016, 3, 1600662.	3.7	17
245	Binderâ€Free and Carbonâ€Free 3D Porous Air Electrode for Liâ€O ₂ Batteries with High Efficiency, High Capacity, and Long Life. Small, 2016, 12, 3031-3038.	10.0	59
246	Tuned In Situ Growth of Nanolayered rGO on 3D Na ₃ V ₂ (PO ₄) ₃ Matrices: A Step toward Long Lasting, High Power Naâ€lon Batteries. Advanced Materials Interfaces, 2016, 3, 1600007.	3.7	43
247	A New Strategy for Achieving a High Performance Anode for Lithium Ion Batteries—Encapsulating Germanium Nanoparticles in Carbon Nanoboxes. Advanced Energy Materials, 2016, 6, 1501666.	19.5	111
248	A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for Highâ€Performance Lithiumâ€"Sulfur Batteries. Angewandte Chemie, 2016, 128, 4060-4064.	2.0	19
249	A Green and Facile Way to Prepare Granadillaâ€Like Siliconâ€Based Anode Materials for Liâ€lon Batteries. Advanced Functional Materials, 2016, 26, 440-446.	14.9	187
250	Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium–sulfur batteries. Nano Energy, 2016, 26, 722-728.	16.0	72
251	Boron-Doped Anatase TiO ₂ as a High-Performance Anode Material for Sodium-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16009-16015.	8.0	145
252	Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries. ACS Applied Materials & Date (1988) amp; Interfaces, 2016, 8, 18860-18866.	8.0	96

#	Article	IF	Citations
253	A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3992-3996.	13.8	200
254	Superior sodium-ion storage performance of Co ₃ O ₄ @nitrogen-doped carbon: derived from a metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 5428-5435.	10.3	159
255	MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon, 2016, 96, 1200-1207.	10.3	96
256	Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C). Journal of Materials Chemistry A, 2016, 4, 505-511.	10.3	106
257	Growth of Highly Nitrogen-Doped Amorphous Carbon for Lithium-ion Battery Anode. Electrochimica Acta, 2016, 188, 414-420.	5.2	79
258	Improved cycling stability of lithium–sulphur batteries by enhancing the retention of active material with a sandwiched hydrothermally treated graphite film. RSC Advances, 2016, 6, 34131-34136.	3.6	10
259	A methodical approach for fabrication of binder-free Li2S-C composite cathode with high loading of active material for Li-S battery. Carbon, 2016, 103, 163-171.	10.3	45
260	Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 Porous Microspheres: Facile Designed Synthesis and Their Improved Electrochemical Performance. Electrochimica Acta, 2016, 191, 401-410.	5.2	75
261	Regeneration of alkaline metal amidoboranes with high purity. International Journal of Hydrogen Energy, 2016, 41, 407-412.	7.1	13
262	Bismuth sulfide: A high-capacity anode for sodium-ion batteries. Journal of Power Sources, 2016, 309, 135-140.	7.8	122
263	Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 5260-5268.	7.1	44
264	Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2078-2087.	8.0	113
265	One-step synthesis of a silicon/hematite@carbon hybrid nanosheet/silicon sandwich-like composite as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4056-4061.	10.3	45
266	Lithium–Oxygen Batteries: Porous AgPd–Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries (Adv. Mater. 43/2015). Advanced Materials, 2015, 27, 7012-7012.	21.0	2
267	Surface Engineering and Design Strategy for Surfaceâ€Amorphized TiO ₂ @Graphene Hybrids for High Power Liâ€kon Battery Electrodes. Advanced Science, 2015, 2, 1500027.	11.2	182
268	Unique Urchin-like Ca2Ge7O16 Hierarchical Hollow Microspheres as Anode Material for the Lithium Ion Battery. Scientific Reports, 2015, 5, 11326.	3.3	21
269	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	6.8	302
270	Porous AgPd–Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries. Advanced Materials, 2015, 27, 6862-6869.	21.0	106

#	Article	IF	Citations
271	Monodisperse Magnesium Hydride Nanoparticles Uniformly Selfâ€Assembled on Graphene. Advanced Materials, 2015, 27, 5981-5988.	21.0	298
272	Edgeâ€Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels. Advanced Materials, 2015, 27, 7196-7203.	21.0	227
273	A Facile Synthesis of Highâ€Surfaceâ€Area Sulfur–Carbon Composites for Li/S Batteries. Chemistry - A European Journal, 2015, 21, 10061-10069.	3.3	20
274	Effects of Cu Substitution for Sn on the Electrochemical Performance of La0.7Mg0.3Al0.3Mn0.4Sn0.5â^²xCuxNi3.8 (x = 0–0.5) Alloys for Ni-MH Batteries. Batteries, 2015, 1, 3-10.	4.5	4
275	Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 978-981.	10.3	75
276	A hybrid gel–solid-state polymer electrolyte for long-life lithium oxygen batteries. Chemical Communications, 2015, 51, 8269-8272.	4.1	47
277	Nano-confined multi-synthesis of a Li–Mg–N–H nanocomposite towards low-temperature hydrogen storage with stable reversibility. Journal of Materials Chemistry A, 2015, 3, 12646-12652.	10.3	25
278	Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium Ion Batteries (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015, 25, 1328-1328.	14.9	6
279	Amorphous carbon layer contributing Li storage capacity to Nb ₂ O ₅ @C nanosheets. RSC Advances, 2015, 5, 36104-36107.	3.6	44
280	Nanoarrays: design, preparation and supercapacitor applications. RSC Advances, 2015, 5, 55856-55869.	3.6	68
281	Hydrogels: Edgeâ€Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7247-7247.	21.0	8
282	Electrospinning of crystalline MoO ₃ @C nanofibers for high-rate lithium storage. Journal of Materials Chemistry A, 2015, 3, 3257-3260.	10.3	69
283	Edgeâ€Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dyeâ€Sensitized Solar Cells and Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 1170-1179.	14.9	174
284	A systematic approach to high and stable discharge capacity for scaling up the lithium–sulfur battery. Journal of Power Sources, 2015, 279, 231-237.	7.8	25
285	Flexible free-standing graphene paper with interconnected porous structure for energy storage. Journal of Materials Chemistry A, 2015, 3, 4428-4434.	10.3	55
286	Effect of Sn substitution for Co on microstructure and electrochemical performance of AB5 type La0.7Mg0.3Al0.3Mn0.4Co0.5–xSnxNi3.8 (x=0–0.5) alloys. Transactions of Nonferrous Metals Society of China, 2015, 25, 520-526.	4.2	8
287	Rapid synthesis of \hat{I}_{\pm} -Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. Journal of Power Sources, 2015, 280, 107-113.	7.8	123
288	A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries. Scientific Reports, 2015, 5, 8012.	3.3	34

#	Article	IF	Citations
289	A new, cheap, and productive FeP anode material for sodium-ion batteries. Chemical Communications, 2015, 51, 3682-3685.	4.1	154
290	Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper. Scientific Reports, 2015, 5, 7743.	3.3	63
291	A Metalâ€Free, Freeâ€Standing, Macroporous Graphene@gâ€C ₃ N ₄ Composite Air Electrode for Highâ€Energy Lithium Oxygen Batteries. Small, 2015, 11, 2817-2824.	10.0	157
292	Highly nitrogen doped carbon nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2015, 51, 11791-11794.	4.1	52
293	A B ₄ C nanowire and carbon nanotube composite as a novel bifunctional electrocatalyst for high energy lithium oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 18395-18399.	10.3	22
294	Comparison of Few-layer Graphene Prepared from Natural Graphite through Fast Synthesis Approach. Journal of Materials Science and Technology, 2015, 31, 907-912.	10.7	19
295	A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19011-19017.	10.3	113
296	Cobalt phosphide as a new anode material for sodium storage. Journal of Power Sources, 2015, 294, 627-632.	7.8	158
297	Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres. Scientific Reports, 2015, 5, 11989.	3.3	58
298	Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices. ACS Central Science, 2015, 1, 206-216.	11.3	60
299	Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH ₂ . Journal of Materials Chemistry A, 2015, 3, 15843-15848.	10.3	121
300	Free-standing composite hydrogel films for superior volumetric capacitance. Journal of Materials Chemistry A, 2015, 3, 15668-15674.	10.3	69
301	Effective enhancement of the electrochemical performance of layered cathode Li _{1.5} Mn _{0.75} Ni _{0.25} O _{2.5} via a novel facile molten salt method. RSC Advances, 2015, 5, 58528-58535.	3.6	4
302	V 2 O 5 /Mesoporous Carbon Composite as a Cathode Material for Lithium-ion Batteries. Electrochimica Acta, 2015, 173, 172-177.	5.2	36
303	Facile Method To Synthesize Na-Enriched Na $<$ sub $>1+<$ i $>xi>sub>FeFe(CN)<sub>6sub>Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 1997-2003.$	6.7	163
304	Sodium borohydride hydrazinates: synthesis, crystal structures, and thermal decomposition behavior. Journal of Materials Chemistry A, 2015, 3, 11269-11276.	10.3	19
305	Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries. Chemical Communications, 2015, 51, 9809-9812.	4.1	61
306	Guanidinium octahydrotriborate: an ionic liquid with high hydrogen storage capacity. Journal of Materials Chemistry A, 2015, 3, 11411-11416.	10.3	25

#	Article	IF	Citations
307	N-Doped Crumpled Graphene Derived from Vapor Phase Deposition of PPy on Graphene Aerogel as an Efficient Oxygen Reduction Reaction Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7066-7072.	8.0	42
308	Multifunctional conducing polymer coated Na1+MnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy, 2015, 13, 200-207.	16.0	165
309	Interplay between Electrochemistry and Phase Evolution of the P2-type Na _{<i>x</i>} (Fe _{1/2} Mn _{1/2})O ₂ Cathode for Use in Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 3150-3158.	6.7	121
310	Niobium doped anatase TiO ₂ as an effective anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22969-22974.	10.3	77
311	Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18, 133-142.	16.0	238
312	Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nature Communications, 2015, 6, 8689.	12.8	374
313	Growth of MoS ₂ @C nanobowls as a lithium-ion battery anode material. RSC Advances, 2015, 5, 92506-92514.	3.6	54
314	Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC Advances, 2015, 5, 80536-80541.	3.6	52
315	Nitrogen-doped carbon nanofibers with effectively encapsulated GeO ₂ nanocrystals for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 21699-21705.	10.3	39
316	Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy, 2015, 11, 587-599.	16.0	128
317	Improving the electrochemical performance of the LiNi $<$ sub $>$ 0.5 $<$ /sub $>$ Mn $<$ sub $>$ 1.5 $<$ /sub $>$ O $<$ sub $>$ 4 $<$ /sub $>$ spinel by polypyrrole coating as a cathode material for the lithium-ion battery. Journal of Materials Chemistry A, 2015, 3, 404-411.	10.3	130
318	Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. Journal of Power Sources, 2015, 275, 392-398.	7.8	48
319	Na ₃ V ₂ (PO ₄) ₃ particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 1005-1009.	10.3	92
320	One-dimensional nanostructured design of Li _{$1+x(Mn1/3Ni1/3Fe1/3)O2 as a dual cathode for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 250-257.$}	10.3	32
321	Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon, 2015, 81, 782-787.	10.3	170
322	A novel type of one-dimensional organic selenium-containing fiber with superior performance for lithium–selenium and sodium–selenium batteries. RSC Advances, 2014, 4, 61673-61678.	3.6	80
323	The Mechanism of the Oneâ€Step Synthesis of Hollowâ€Structured Li ₃ VO ₄ as an Anode for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 5608-5612.	3.3	38
324	A facile synthesis approach to micro–macroporous carbon from cotton and its application in the lithium–sulfur battery. RSC Advances, 2014, 4, 65074-65080.	3.6	50

#	Article	IF	Citations
325	A Hierarchical Word-Merging Algorithm with Class Separability Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36, 417-435.	13.9	12
326	Enhancing the High Rate Capability and Cycling Stability of LiMn ₂ O ₄ by Coating of Solid-State Electrolyte LiNbO ₃ . ACS Applied Materials & Interfaces, 2014, 6, 22155-22165.	8.0	75
327	Liquid Crystalline Graphene Oxide/PEDOT:PSS Self-Assembled 3D Architecture for Binder-Free Supercapacitor Electrodes. Frontiers in Energy Research, 2014, 2, .	2.3	45
328	Mass production of three-dimensional hierarchical microfibers constructed from silicon–carbon core–shell architectures with high-performance lithium storage. Carbon, 2014, 72, 169-175.	10.3	34
329	Tuning three-dimensional TiO2 nanotube electrode to achieve high utilization of Ti substrate for lithium storage. Electrochimica Acta, 2014, 133, 570-577.	5.2	36
330	Layered P2â€Na _{0.66} Fe _{0.5} Mn _{0.5} O ₂ Cathode Material for Rechargeable Sodiumâ€lon Batteries. ChemElectroChem, 2014, 1, 371-374.	3.4	52
331	Three-dimensional-network Li3V2(PO4)3/C composite as high rate lithium ion battery cathode material and its compatibility with ionic liquid electrolytes. Journal of Power Sources, 2014, 246, 124-131.	7.8	48
332	A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4613.	10.3	37
333	Global and Local Structure Preservation for Feature Selection. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 1083-1095.	11.3	135
334	Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes. Carbon, 2014, 66, 637-645.	10.3	49
335	SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014, 7, 1466-1476.	10.4	108
336	Liquid Crystalline Dispersions of Grapheneâ€Oxideâ€Based Hybrids: A Practical Approach towards the Next Generation of 3D Isotropic Architectures for Energy Storage Applications. Particle and Particle Systems Characterization, 2014, 31, 465-473.	2.3	20
337	Design of selfâ€assembled TiO ₂ architectures: Towards hybrid nanotubular interfaces. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 938-945.	1.8	4
338	In situ engineering of urchin-like reduced graphene oxide–Mn ₃ O ₄ nanostructures for supercapacitors. RSC Advances, 2014, 4, 886-892.	3.6	40
339	High performance pure sulfur honeycomb-like architectures synthesized by a cooperative self-assembly strategy for lithium–sulfur batteries. RSC Advances, 2014, 4, 36513-36516.	3.6	8
340	Controllable synthesis of RGO/Fe _x O _y nanocomposites as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9844-9850.	10.3	68
341	Highly oriented LiFePO4 thin film electrodes via chemical solution deposition. Solid State Ionics, 2014, 268, 117-124.	2.7	5
342	On the roles of graphene oxide doping for enhanced supercurrent in MgB ₂ based superconductors. Nanoscale, 2014, 6, 6166-6172.	5.6	40

#	Article	IF	Citations
343	Reversible sodium storage via conversion reaction of a MoS ₂ –C composite. Chemical Communications, 2014, 50, 10730-10733.	4.1	105
344	A triblock-copolymer-templating route to carbon spheres@SBA-15 large mesopore core–shell and hollow structures. RSC Advances, 2014, 4, 48676-48681.	3.6	4
345	Tuning the Band Gap in Silicene by Oxidation. ACS Nano, 2014, 8, 10019-10025.	14.6	175
346	Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS ₂ to Orthorhombic-SnS. ACS Nano, 2014, 8, 8323-8333.	14.6	592
347	Porous Ni0.5Zn0.5Fe2O4 Nanospheres: Synthesis, Characterization, and Application for Lithium Storage. Electrochimica Acta, 2014, 147, 143-150.	5.2	16
348	Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon, 2014, 79, 554-562.	10.3	109
349	Sn _{4+<i>x</i>} P ₃ @ Amorphous Snâ€P Composites as Anodes for Sodiumâ€ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability. Advanced Materials, 2014, 26, 4037-4042.	21.0	298
350	Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy, 2014, 8, 297-304.	16.0	77
351	TiO 2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries. Energy, 2014, 75, 597-602.	8.8	49
352	Well-dispersed lithium amidoborane nanoparticles through nanoreactor engineering for improved hydrogen release. Nanoscale, 2014, 6, 12333-12339.	5.6	15
353	Study on Vanadium Substitution to Iron in Li2FeP2O7 as Cathode Material for Lithium-ion Batteries. Electrochimica Acta, 2014, 141, 195-202.	5.2	12
354	Highâ€Performance Sodiumâ€lon Batteries and Sodiumâ€lon Pseudocapacitors Based on MoS ₂ /Graphene Composites. Chemistry - A European Journal, 2014, 20, 9607-9612.	3.3	192
355	Ultrafine SnO ₂ nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. Journal of Materials Chemistry A, 2014, 2, 529-534.	10.3	297
356	One-Step Synthesis of Graphene/Polypyrrole Nanofiber Composites as Cathode Material for a Biocompatible Zinc/Polymer Battery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16679-16686.	8.0	65
357	Synthesis of potential theranostic system consisting of methotrexate-immobilized (3-aminopropyl)trimethoxysilane coated \hat{l}_{\pm} -Bi2O3 nanoparticles for cancer treatment. RSC Advances, 2014, 4, 24412.	3.6	38
358	Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 2014, 26, 6749-6755.	21.0	260
359	Hollow MnCo ₂ O ₄ Submicrospheres with Multilevel Interiors: From Mesoporous Spheres to Yolk-in-Double-Shell Structures. ACS Applied Materials & Spheres to Yolk-in-Double-Shell Structures. ACS Applied Materials & Spheres & Sphe	8.0	187
360	A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief. Applied Energy, 2014, 131, 67-78.	10.1	111

#	Article	IF	Citations
361	Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014, 16, 20347-20359.	2.8	347
362	Sulfur–Graphene Nanostructured Cathodes <i>via</i> Ball-Milling for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 10920-10930.	14.6	213
363	Self-assembled graphene and LiFePO4 composites with superior high rate capability for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 4927.	10.3	72
364	Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors. Journal of Alloys and Compounds, 2014, 586, 745-753.	5.5	103
365	Surface engineering of self-assembled TiO2 nanotube arrays: A practical route towards energy storage applications. Journal of Alloys and Compounds, 2014, 586, 197-201.	5.5	23
366	Electrospun P2-type Na _{2/3} (Fe _{1/2} Mn _{1/2})O ₂ Hierarchical Nanofibers as Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8953-8958.	8.0	131
367	Effects of Reducing Temperatures on the Hydrogen Storage Capacity of Double-Walled Carbon Nanotubes with Pd Loading. Journal of Nanoscience and Nanotechnology, 2014, 14, 4706-4709.	0.9	5
368	Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries. Scientific Reports, 2014, 4, 6095.	3.3	63
369	In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 7030.	3.3	16
370	Hierarchical Porous Li2Mg(NH)2@C Nanowires with Long Cycle Life Towards Stable Hydrogen Storage. Scientific Reports, 2014, 4, 6599.	3.3	16
371	TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. Journal of Nanoparticle Research, 2013, $15,1.$	1.9	32
372	Polypyrrole as cathode materials for Zn-polymer battery with various biocompatible aqueous electrolytes. Electrochimica Acta, 2013, 95, 212-217.	5.2	35
373	The effects of FEC (fluoroethylene carbonate) electrolyte additive on the lithium storage properties of NiO (nickel oxide) nanocuboids. Energy, 2013, 58, 707-713.	8.8	26
374	Combined effects of hydrogen back-pressure andÂNbF5 addition on the dehydrogenation and rehydrogenation kinetics of the LiBH4–MgH2 composite system. International Journal of Hydrogen Energy, 2013, 38, 3650-3660.	7.1	41
375	Rapid synthesis of free-standing MoO3/Graphene films by the microwave hydrothermal method as cathode for bendable lithium batteries. Journal of Power Sources, 2013, 228, 198-205.	7.8	116
376	Learning with multi-resolution overlapping communities. Knowledge and Information Systems, 2013, 36, 517-535.	3.2	24
377	In situ one-step synthesis of a 3D nanostructured germanium–graphene composite and its application in lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10798.	10.3	69
378	Mixed-metal (Li, Al) amidoborane: synthesis and enhanced hydrogen storage properties. Journal of Materials Chemistry A, 2013, 1, 1810-1820.	10.3	37

#	Article	IF	Citations
379	A facile route to synthesize transition metal oxide/reduced graphene oxide composites and their lithium storage performance. RSC Advances, 2013, 3, 16597.	3.6	61
380	LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte. Electrochimica Acta, 2013, 101, 151-157.	5.2	37
381	A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14115.	10.3	80
382	Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. Journal of Materials Chemistry A, 2013, 1, 15292.	10.3	151
383	Facile Synthesis of Hierarchical Networks Composed of Highly Interconnected V ₂ O ₅ Nanosheets Assembled on Carbon Nanotubes and Their Superior Lithium Storage Properties. ACS Applied Materials & Storage Properties. ACS Applied Materials & Storage Properties.	8.0	75
384	Electrospun lithium metal oxide cathode materials for lithium-ion batteries. RSC Advances, 2013, 3, 25576.	3.6	65
385	In-situ hydrothermal synthesis of graphene woven VO2 nanoribbons with improved cycling performance. Journal of Power Sources, 2013, 244, 684-689.	7.8	63
386	Hollow Structured Li ₃ VO ₄ Wrapped with Graphene Nanosheets in Situ Prepared by a One-Pot Template-Free Method as an Anode for Lithium-Ion Batteries. Nano Letters, 2013, 13, 4715-4720.	9.1	303
387	On Similarity Preserving Feature Selection. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 619-632.	5.7	249
388	Reversible storage of hydrogen in NaF–MB2 (M = Mg, Al) composites. Journal of Materials Chemistry A, 2013, 1, 2806.	10.3	13
389	Stabilization of NaZn(BH ₄) ₃ via nanoconfinement in SBA-15 towards enhanced hydrogen release. Journal of Materials Chemistry A, 2013, 1, 250-257.	10.3	34
390	Flexible cellulose based polypyrrole–multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. Journal of Materials Chemistry A, 2013, 1, 14300.	10.3	29
391	The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. Journal of Power Sources, 2013, 225, 172-178.	7.8	202
392	Improved dehydrogenation properties of the combined Mg(BH4)2·6NH3–nNH3BH3 system. International Journal of Hydrogen Energy, 2013, 38, 16199-16207.	7.1	16
393	Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries. Electrochimica Acta, 2013, 108, 820-826.	5.2	40
394	The electrochemical properties of high-capacity sulfur/reduced graphene oxide with different electrolyte systems. Journal of Power Sources, 2013, 244, 240-245.	7.8	32
395	Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochimica Acta, 2013, 87, 801-808.	5. 2	101
396	Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: Stable reversibility of hydrogen absorption/resorption. Acta Materialia, 2013, 61, 6882-6893.	7.9	30

#	Article	IF	Citations
397	Nanocomposites of silicon and carbon derived from coal tar pitch: Cheap anode materials for lithium-ion batteries with long cycle life and enhanced capacity. Electrochimica Acta, 2013, 93, 213-221.	5.2	93
398	Catalytic Role of Ge in Highly Reversible GeO ₂ /Ge/C Nanocomposite Anode Material for Lithium Batteries. Nano Letters, 2013, 13, 1230-1236.	9.1	261
399	Development of MoS ₂ –CNT Composite Thin Film from Layered MoS ₂ for Lithium Batteries. Advanced Energy Materials, 2013, 3, 798-805.	19.5	282
400	Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon, 2013, 57, 202-208.	10.3	491
401	Lithium rich and deficient effects in LixCoPO4 (x =0.90, 0.95, 1, 1.05) as cathode material for lithium-ion batteries. Electrochimica Acta, 2013, 88, 865-870.	5.2	10
402	A hybrid electrolyte energy storage device with high energy and long life using lithium anode and MnO2 nanoflake cathode. Electrochemistry Communications, 2013, 31, 35-38.	4.7	24
403	Synthesis and electrochemical properties of MoO3/C nanocomposite. Electrochimica Acta, 2013, 93, 101-106.	5.2	42
404	A Conductive Polypyrroleâ€Coated, Sulfur–Carbon Nanotube Composite for Use in Lithium–Sulfur Batteries. ChemPlusChem, 2013, 78, 318-324.	2.8	57
405	Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Nanoscale, 2013, 5, 1922.	5.6	117
406	Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Advances, 2013, 3, 5003.	3.6	44
407	An overviewâ€"Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells. Materials Research Bulletin, 2013, 48, 4968-4973.	5.2	17
408	\hat{l}^2 -Bi2O3 and Er3+ doped \hat{l}^2 -Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2013, 140-141, 141-150.	20.2	77
409	Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 7666.	10.3	66
410	Cathode materials for next generation lithium ion batteries. Nano Energy, 2013, 2, 439-442.	16.0	221
411	Mesoporous hollow PtCu nanoparticles for electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 2391.	10.3	81
412	PdNi Hollow Nanoparticles for Improved Electrocatalytic Oxygen Reduction in Alkaline Environments. ACS Applied Materials & Environments.	8.0	108
413	Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-lon Storage. Nano Letters, 2013, 13, 5480-5484.	9.1	390
414	Carbonâ€Coated Li ₃ N Nanofibers for Advanced Hydrogen Storage. Advanced Materials, 2013, 25, 6238-6244.	21.0	66

#	Article	IF	CITATIONS
415	CuS Nanoflakes, Microspheres, Microflowers, and Nanowires: Synthesis and Lithium Storage Properties. Journal of Nanoscience and Nanotechnology, 2013, 13, 1309-1316.	0.9	17
416	Rietveld Analysis of the Effect of Annealing Atmosphere on Phase Evolution of Nanocrystalline TiO ₂ Powders. Journal of Nanoscience and Nanotechnology, 2012, 12, 4724-4728.	0.9	4
417	One-Step Spray Pyrolysis Synthesized CuO-Carbon Composite Combined with Carboxymethyl Cellulose Binder as Anode for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 1314-1317.	0.9	4
418	Enhanced Cycling Performance of Nanocrystalline Fe ₃ O ₄ /C as Anode Material for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 1246-1250.	0.9	3
419	Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. Journal of Materials Chemistry, 2012, 22, 16465.	6.7	206
420	Hydrogen De-/Absorption Improvement of NaBH4 Catalyzed by Titanium-Based Additives. Journal of Physical Chemistry C, 2012, 116, 1596-1604.	3.1	74
421	Enhanced hydrogen storage properties of NaAlH4co-catalysed with niobium fluoride and single-walled carbon nanotubes. RSC Advances, 2012, 2, 1569-1576.	3.6	25
422	KO.25Mn2O4nanofiber microclusters as high power cathode materials for rechargeable lithium batteries. RSC Advances, 2012, 2, 1643-1649.	3.6	44
423	Rapid microwave-assisted synthesis of Mn3O4–graphene nanocomposite and its lithium storage properties. Journal of Materials Chemistry, 2012, 22, 3600.	6.7	183
424	Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. Physical Chemistry Chemical Physics, 2012, 14, 4770.	2.8	138
425	Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery. Journal of Power Sources, 2012, 220, 47-53.	7.8	60
426	Enhanced Hydrogen Storage in Graphene Oxideâ€MWCNTs Composite at Room Temperature. Advanced Energy Materials, 2012, 2, 1439-1446.	19.5	97
427	Enhanced Electrochemical Performance of MoS ₂ for Lithium Ion Batteries by Simple Chemical Lithiation. Journal of the Chinese Chemical Society, 2012, 59, 1196-1200.	1.4	8
428	Microwaveâ€assisted Synthesis of Flowerâ€like Structure ϵâ€MnO ₂ as Cathode for Lithium Ion Batteries. Journal of the Chinese Chemical Society, 2012, 59, 1211-1215.	1.4	21
429	All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimica Acta, 2012, 83, 209-215.	5.2	56
430	Pt–Ni/C catalysts using different carbon supports for the cathode of the proton exchange membrane fuel cell (PEMFC). Materials Chemistry and Physics, 2012, 136, 845-849.	4.0	15
431	Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V2O5–polypyrrole cathodes. Journal of Materials Chemistry, 2012, 22, 11159.	6.7	44
432	Globular reduced graphene oxide-metal oxide structures for energy storage applications. Energy and Environmental Science, 2012, 5, 5236-5240.	30.8	69

#	Article	IF	Citations
433	Selfâ€Assembled Germanium/Carbon Nanostructures as Highâ€Power Anode Material for the Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2012, 51, 5657-5661.	13.8	231
434	Facile synthesis of graphene–molybdenum dioxide and its lithium storage properties. Journal of Materials Chemistry, 2012, 22, 16072.	6.7	53
435	Cocore–Ptshell nanoparticles as cathode catalyst for PEM fuel cells. Journal of Solid State Electrochemistry, 2012, 16, 1105-1110.	2.5	10
436	Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon, 2012, 50, 1289-1297.	10.3	179
437	Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon, 2012, 50, 1897-1903.	10.3	276
438	Effects of different palladium content loading on the hydrogen storage capacity of double-walled carbon nanotubes. International Journal of Hydrogen Energy, 2012, 37, 5686-5690.	7.1	22
439	Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 2012, 60, 201-205.	5.2	60
440	Synthesis of nano-sized Li4Ti5O12/C composite anode material with excellent high-rate performance. Materials Letters, 2012, 68, 32-35.	2.6	27
441	Microporous gel polymer electrolytes for lithium rechargeable battery application. Journal of Power Sources, 2012, 201, 294-300.	7.8	163
442	LiFePO4–Fe2P–C composite cathode: An environmentally friendly promising electrode material for lithium-ion battery. Journal of Power Sources, 2012, 206, 259-266.	7.8	29
443	Indigo carmine (IC) doped polypyrrole (PPy) as a free-standing polymer electrode for lithium secondary battery application. Solid State Ionics, 2012, 215, 29-35.	2.7	29
444	Irradiation Si on Carbon Nanotube Paper as a Flexible Anode Material for Lithium-Ion Batteries. Nanoscience and Nanotechnology Letters, 2012, 4, 169-172.	0.4	0
445	A GBH/LiBH4 coordination system with favorable dehydrogenation. Journal of Materials Chemistry, 2011, 21, 7138.	6.7	27
446	Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Transactions, 2011, 40, 5673.	3.3	64
447	TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. Journal of Materials Chemistry, 2011, 21, 8591.	6.7	71
448	Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. Journal of Materials Research, 2011, 26, 860-866.	2.6	36
449	SnO ₂ –Graphene Composite Synthesized via an Ultrafast and Environmentally Friendly Microwave Autoclave Method and Its Use as a Superior Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 25115-25120.	3.1	147
450	A highly ordered titania nanotube array as a supercapacitor electrode. Physical Chemistry Chemical Physics, 2011, 13, 5038.	2.8	188

#	Article	IF	Citations
451	Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. Journal of Materials Chemistry, 2011, 21, 5128.	6.7	288
452	Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Transactions, 2011, 40, 12801.	3.3	62
453	The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation. CrystEngComm, 2011, 13, 5055.	2.6	122
454	MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 9350.	6.7	127
455	Rapid Synthesis of Li ₄ Ti ₅ O ₁₂ Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery. Journal of Physical Chemistry C, 2011, 115, 16220-16227.	3.1	368
456	Nanocrystalline porous α-LiFeO ₂ â€"C compositeâ€"an environmentally friendly cathode for the lithium-ion battery. Energy and Environmental Science, 2011, 4, 952-957.	30.8	61
457	Improved reversible dehydrogenation of 2LiBH ₄ +MgH ₂ system by introducing Ni nanoparticles. Journal of Materials Research, 2011, 26, 1143-1150.	2.6	18
458	Enhanced hydrogen sorption properties in the LiBH4–MgH2 system catalysed by Ru nanoparticles supported on multiwalled carbon nanotubes. Journal of Alloys and Compounds, 2011, 509, 5012-5016.	5.5	25
459	Synthesis of carbon coated nanocrystalline porous \hat{l}_{\pm} -LiFeO2 composite and its application as anode for the lithium ion battery. Journal of Alloys and Compounds, 2011, 509, 5408-5413.	5.5	23
460	Application of statistical methodology for the evaluation of mechanically activated phase transformation in nanocrystalline TiO2. Journal of Alloys and Compounds, 2011, 509, 8912-8916.	5.5	11
461	Preparation and electrochemical performance of hollow-spherical polypyrrole/V2O5 composite. Transactions of Nonferrous Metals Society of China, 2011, 21, 1303-1308.	4.2	12
462	Graphene–V2O5·nH2O xerogel composite cathodes for lithium ion batteries. RSC Advances, 2011, 1, 690.	3.6	84
463	Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy and Environmental Science, 2011, 4, 1855.	30.8	414
464	Comparison of hydrogen storage properties of Mg–Ni from different preparation methods. Materials Chemistry and Physics, 2011, 127, 405-408.	4.0	11
465	Fast response detection of H2S by CuO-doped SnO2 films prepared by electrodeposition and oxidization at low temperature. Materials Chemistry and Physics, 2011, 130, 1325-1328.	4.0	25
466	α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Materials Research Bulletin, 2011, 46, 858-864.	5.2	90
467	Layered δ-MnO2 as positive electrode for lithium intercalation. Materials Letters, 2011, 65, 1319-1322.	2.6	32
468	Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries. Electrochimica Acta, 2011, 58, 456-462.	5.2	65

#	Article	IF	CITATIONS
469	Hydrazine bisborane as a promising material for chemical hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 13640-13644.	7.1	23
470	Improved hydrogen sorption performance of NbF5-catalysed NaAlH4. International Journal of Hydrogen Energy, 2011, 36, 14503-14511.	7.1	39
471	Improved Hydrogen Storage Properties of NaBH ₄ Destabilized by CaH ₂ and Ca(BH ₄) ₂ . Journal of Physical Chemistry C, 2011, 115, 9283-9290.	3.1	41
472	The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery. Journal of Applied Electrochemistry, 2011, 41, 1261-1267.	2.9	17
473	Three-dimensional nanocarbon and the electrochemistry of nanocarbon/tin oxide for lithium ion batteries. Journal of Solid State Electrochemistry, 2011, 15, 2645-2652.	2.5	14
474	Durability investigation of graphene-supported Pt nanocatalysts for PEM fuel cells. Journal of Solid State Electrochemistry, 2011, 15, 1057-1062.	2.5	42
475	Effect of different reductants for palladium loading on hydrogen storage capacity of double-walled carbon nanotubes. International Journal of Hydrogen Energy, 2011, 36, 9032-9036.	7.1	15
476	Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li ₄ Ti ₅ O ₁₂ â€TiO ₂ : A Nanocomposite Anode Material for Liâ€ion Batteries. Advanced Energy Materials, 2011, 1, 212-220.	19.5	281
477	Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres. Angewandte Chemie - International Edition, 2011, 50, 5947-5951.	13.8	745
478	Grapheneâ€Encapsulated Fe ₃ O ₄ Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries. Chemistry - A European Journal, 2011, 17, 661-667.	3.3	395
479	Lithiumâ€lon Conducting Electrolyte Salts for Lithium Batteries. Chemistry - A European Journal, 2011, 17, 14326-14346.	3.3	341
480	Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries. Composites Science and Technology, 2011, 71, 343-349.	7.8	51
481	TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance. Electrochemistry Communications, 2011, 13, 46-49.	4.7	42
482	Synthesis and characterization of graphene–nickel oxide nanostructures for fast charge–discharge application. Electrochimica Acta, 2011, 56, 5815-5822.	5.2	141
483	Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochemistry Communications, 2011, 13, 383-386.	4.7	93
484	Hydrogen storage properties of Mg-10Âwt% Ni alloy co-catalysed with niobium and multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2011, 36, 571-579.	7.1	56
485	The effect of transition metals on hydrogen migration and catalysis in cast Mg–Ni alloys. International Journal of Hydrogen Energy, 2011, 36, 4984-4992.	7.1	60
486	Enhanced hydrogen storage performance of LiAlH4â€"MgH2â€"TiF3 composite. International Journal of Hydrogen Energy, 2011, 36, 5369-5374.	7.1	58

#	Article	IF	CITATIONS
487	Allyl-substituted triazines as additives for enhancing the thermal stability of Li-ion batteries. Journal of Power Sources, 2011, 196, 1483-1487.	7.8	20
488	Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources, 2011, 196, 7030-7034.	7.8	362
489	High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries. Journal of Power Sources, 2011, 196, 7025-7029.	7.8	49
490	Synthesis of Co3O4/Carbon composite nanowires and their electrochemical properties. Journal of Power Sources, 2011, 196, 6987-6991.	7.8	118
491	Hollow hematite nanosphere/carbon nanotube composite: mass production and its high-rate lithium storage properties. Nanotechnology, 2011, 22, 265401.	2.6	30
492	SnSb/Graphene Composite as Anode Materials for Lithium Ion Batteries. Advanced Science Letters, 2011, 4, 18-23.	0.2	32
493	Pt/C Catalysts Using Different Carbon Supports for the Cathode of PEM Fuel Cells. Advanced Science Letters, 2011, 4, 115-120.	0.2	6
494	Effect of Annealing on Electrochemical Performance of Anodized TiO ₂ Nanotubes for Lithium Ion Batteries. Advanced Science Letters, 2011, 4, 469-473.	0.2	10
495	Acid Treatment of Carbon Supports for Proton Exchange Membrane Fuel Cell Electrocatalyst. Advanced Science Letters, 2011, 4, 492-495.	0.2	1
496	Electrochemical properties of Fe ₂ O ₃ thin film fabricated by electrostatic spray deposition for lithium-ion batteries. Physica Scripta, 2010, T139, 014066.	2.5	7
497	Significantly improved dehydrogenation of LiBH ₄ destabilized by TiF ₃ . Energy and Environmental Science, 2010, 3, 465-470.	30.8	96
498	Submicron-sized cube-like α-Fe2O3 agglomerates as an anode material for Li-ion batteries. Electrochimica Acta, 2010, 55, 8521-8526.	5.2	43
499	Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics, 2010, 180, 1646-1651.	2.7	144
500	Basic molten salt processâ€"A new route for synthesis of nanocrystalline Li4Ti5O12â€"TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3â€"LiOHâ€"Li2O2. Journal of Power Sources, 2010, 195, 4297-4303.	7.8	85
501	Silver-coated TiO2 nanostructured anode materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 571-578.	2.5	40
502	Hydrothermal synthesis of nanostructured MnO2 under magnetic field for rechargeable lithium batteries. Journal of Solid State Electrochemistry, 2010, 14, 1743-1747.	2.5	8
503	Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1841-1846.	2.5	39
504	Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries. Journal of Applied Electrochemistry, 2010, 40, 1415-1419.	2.9	29

#	Article	IF	CITATIONS
505	Synthesis and modification of non-stoichiometric spinel (Li1.02Mn1.90Y0.02O4â°'yF0.08) for lithium-ion batteries. Materials Chemistry and Physics, 2010, 119, 82-85.	4.0	7
506	Pt1â^'Co nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity. Materials Chemistry and Physics, 2010, 124, 841-844.	4.0	15
507	Amminelithium Amidoborane Li(NH ₃)NH ₂ BH ₃ : A New Coordination Compound with Favorable Dehydrogenation Characteristics. Chemistry - A European Journal, 2010, 16, 3763-3769.	3.3	59
508	Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. Journal of Power Sources, 2010, 195, 2372-2376.	7.8	187
509	Microstructure and activation characteristics of Mg–Ni alloy modified by multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010, 35, 4144-4153.	7.1	39
510	Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. International Journal of Hydrogen Energy, 2010, 35, 4569-4575.	7.1	149
511	Chemical processing of double-walled carbon nanotubes for enhanced hydrogen storage. International Journal of Hydrogen Energy, 2010, 35, 6345-6349.	7.1	40
512	Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite. International Journal of Hydrogen Energy, 2010, 35, 7821-7826.	7.1	90
513	Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochemistry Communications, 2010, 12, 1467-1470.	4.7	234
514	Electrode reactions of manganese oxides for secondary lithium batteries. Electrochemistry Communications, 2010, 12, 1520-1523.	4.7	242
515	Solvent-assisted molten salt process: A new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2010, 55, 5006-5013.	5.2	107
516	Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochimica Acta, 2010, 55, 5485-5491.	5.2	65
517	SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochimica Acta, 2010, 56, 314-320.	5.2	107
518	Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process. Electrochimica Acta, 2010, 56, 693-699.	5.2	65
519	LiCoO2 cathode thin film fabricated by RF sputtering for lithium ion microbatteries. Surface and Coatings Technology, 2010, 204, 1710-1714.	4.8	36
520	Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010, 12, 303-306.	4.7	402
521	Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochimica Acta, 2010, 55, 2582-2586.	5.2	119
522	Three-dimensional reticular tin–manganese oxide composite anode materials for lithium ion batteries. Electrochimica Acta, 2010, 55, 4982-4986.	5.2	25

#	Article	IF	Citations
523	Hydrogen Storage Properties of Mg-Ni Alloy Catalysed by Multi-Walled Carbon Nanotubes. Materials Science Forum, 2010, 654-656, 2843-2846.	0.3	O
524	Easy preparation of SnO ₂ @carbon composite nanofibers with improved lithium ion storage properties. Journal of Materials Research, 2010, 25, 1516-1524.	2.6	52
525	Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chemical Communications, 2010, 46, 1106-1108.	4.1	527
526	Dehydrogenation Promotion of LiBH $<$ sub $>$ 4 $<$ /sub $>$ Â \cdot NH $<$ sub $>$ 3 $<$ /sub $>$ Through Heating in Ammonia or Mixing with Metal Hydrides. Journal of Physical Chemistry C, 2010, 114, 12823-12827.	3.1	21
527	Reversible Hydrogen Storage in Destabilized LiAlH ₄ â^'MgH ₂ â^'LiBH ₄ Ternary-Hydride System Doped with TiF ₃ . Journal of Physical Chemistry C, 2010, 114, 11643-11649.	3.1	48
528	A Combined Hydrogen Storage System of Mg(BH ₄) ₂ â^'LiNH ₂ with Favorable Dehydrogenation. Journal of Physical Chemistry C, 2010, 114, 4733-4737.	3.1	82
529	Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 15862-15867.	3.1	128
530	Microstructure and magnetic properties in Sn1 \hat{a} °xFexO2 (x=0.01, 0.05, 0.10) nanoparticles synthesized by hydrothermal method. Journal of Alloys and Compounds, 2010, 491, 679-683.	5.5	23
531	Study on the dehydrogenation kinetics and thermodynamics of Ca(BH4)2. Journal of Alloys and Compounds, 2010, 500, 200-205.	5.5	53
532	Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds, 2010, 503, L1-L4.	5.5	94
533	Preparation, Characterization, and Electrochemical Performance of Li[sub 2]CuSnO[sub 4] and Li[sub 2]CuSnSiO[sub 6] Electrodes for Lithium Batteries. Journal of the Electrochemical Society, 2010, 157, Al183.	2.9	106
534	SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries. Journal of Materials Chemistry, 2010, 20, 5689.	6.7	80
535	High-surface-area α-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. Journal of Materials Chemistry, 2010, 20, 2092.	6.7	228
536	Plum-branch-like carbon nanofibers decorated with SnO2 nanocrystals. Nanoscale, 2010, 2, 1011.	5.6	46
537	Si-based anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010, 20, 10055.	6.7	120
538	SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 9707.	6.7	80
539	Electrochemical Deposition of Porous VO _x and MnO ₂ Nanowires on Stainless Steel Mesh for Flexible Supercapacitors. Advanced Science Letters, 2010, 3, 295-298.	0.2	10
540	Nanosize SnO2 for Highly Responsive Gas Sensor Application. Sensor Letters, 2010, 8, 243-246.	0.4	6

#	Article	IF	CITATIONS
541	Magnetic properties and magnetocaloric effect of (Mn1-xNix)3Sn2(x=0–0.5) compounds. Journal of Applied Physics, 2009, 105, .	2.5	9
542	Self-Oriented Ca[sub 3]Co[sub 4]O[sub 9] Thin Film as an Anode Material for Enhanced Cycling Stability of Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2009, 12, A176.	2.2	10
543	SYNTHESIS OF NANO-CRYSTALLINE CO3O4 PARTICLES BY HYDROTHERMAL METHOD UNDER PULSED MAGNETIC FIELD. International Journal of Modern Physics B, 2009, 23, 3602-3607.	2.0	4
544	HYDROTHERMAL SYNTHESIS OF NANOCRYSTAL MNO ₂ UNDER PULSED MAGNETIC FIELD. International Journal of Modern Physics B, 2009, 23, 3608-3612.	2.0	1
545	Hydrogen Storage Properties of Mg-BCC Composite. International Journal of Green Energy, 2009, 6, 607-615.	3 . 8	7
546	Nanostructured Metal Oxides as Electrode Materials for Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2009, 9, 1263-1267.	0.9	7
547	Nanostructured NiO/C Composite for Lithium-Ion Battery Anode. Journal of Nanoscience and Nanotechnology, 2009, 9, 1951-1955.	0.9	12
548	Synthesis and Electrochemical Studies on Li2CuSnO4 and Li2CuSnSiO6 as Negative Electrode in the Lithium Batteries. ECS Transactions, 2009, 25, 75-89.	0.5	3
549	Dehydrogenation/rehydrogenation mechanism in aluminum destabilized lithium borohydride. Journal of Materials Research, 2009, 24, 2720-2727.	2.6	11
550	Synthesis of catalyzed magnesium hydride with low absorption/desorption temperature. Scripta Materialia, 2009, 61, 469-472.	5.2	38
551	Hydrogen storage properties of MgH2–SiC composites. Materials Chemistry and Physics, 2009, 114, 168-172.	4.0	65
552	Nickel–cobalt oxides/carbon nanoflakes as anode materials for lithium-ion batteries. Materials Research Bulletin, 2009, 44, 140-145.	5.2	28
553	Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Materials Research Bulletin, 2009, 44, 1811-1815.	5.2	339
554	Highly flexible and bendable free-standing thin film polymer for battery application. Materials Letters, 2009, 63, 2352-2354.	2.6	40
555	Tin Oxide Thin Film with Threeâ€Dimensional Ordered Reticular Morphology as a Lithium Ion Battery Anode. ChemPhysChem, 2009, 10, 3101-3104.	2.1	7
556	Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells. Electrochimica Acta, 2009, 54, 1733-1736.	5. 2	226
557	A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochimica Acta, 2009, 54, 7519-7524.	5 . 2	80
558	Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery. Electrochimica Acta, 2009, 55, 504-510.	5.2	93

#	Article	IF	Citations
559	Preparation of tin nanocomposite as anode material by molten salts method and its application in lithium ion batteries. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2546-2550.	1.8	4
560	In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1849-1852.	4.7	520
561	Electrochemical and thermal properties of 2,4,6-tris(trifluoromethyl)-1,3,5-triazine as a flame retardant additive in Li-ion batteries. Electrochimica Acta, 2009, 54, 2259-2265.	5.2	22
562	Multiwalled carbon nanotube-supported Pt/Sn and Pt/Sn/PMo12 electrocatalysts for methanol electro-oxidation. International Journal of Hydrogen Energy, 2009, 34, 2426-2434.	7.1	80
563	Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2009, 34, 7263-7268.	7.1	62
564	Real-time measurement of desorption temperature and kinetics of magnesium hydride powder sample based on optical reflection. International Journal of Hydrogen Energy, 2009, 34, 9168-9172.	7.1	2
565	Three-dimensional Li2O–NiO–CoO composite thin-film anode with network structure for lithium-ion batteries. Journal of Power Sources, 2009, 189, 566-570.	7.8	29
566	Investigation of discharge reaction mechanism of lithium liquid electrolyte sulfur battery. Journal of Power Sources, 2009, 189, 1179-1183.	7.8	134
567	Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method. Journal of Power Sources, 2009, 189, 449-453.	7.8	41
568	SnO2 meso-scale tubes: One-step, room temperature electrodeposition synthesis and kinetic investigation for lithium storage. Electrochemistry Communications, 2009, 11, 242-246.	4.7	56
569	Studies on film formation on cathodes using pyrazole derivatives as electrolyte additives in the Li-ion battery. Electrochemistry Communications, 2009, 11, 1657-1660.	4.7	14
570	Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47, 2976-2983.	10.3	306
571	Improvement of the LiAlH4â^'NaBH4 System for Reversible Hydrogen Storage. Journal of Physical Chemistry C, 2009, 113, 10813-10818.	3.1	42
572	Preparation and Characteristics of LiFePO4 Thin Film by Radio Frequency Magnetron Sputtering for Lithium Microbatteries. Journal of Physical Chemistry C, 2009, 113, 14518-14522.	3.1	33
573	Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. Journal of Alloys and Compounds, 2009, 477, 498-503.	5.5	178
574	Enhanced hydrogen storage performances of NaBH4–MgH2 system. Journal of Alloys and Compounds, 2009, 479, 619-623.	5.5	93
575	Dehydrogenation characteristics of Ti- and Ni/Ti-catalyzed Mg hydrides. Journal of Alloys and Compounds, 2009, 481, 152-155.	5.5	53
576	Reversible hydrogen storage in titanium-catalyzed LiAlH4–LiBH4 system. Journal of Alloys and Compounds, 2009, 487, 434-438.	5.5	51

#	Article	IF	Citations
577	Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Physical Chemistry Chemical Physics, 2009, 11, 3748.	2.8	112
578	Highly porous reticular tin–cobalt oxide composite thin film anodes for lithium ion batteries. Journal of Materials Chemistry, 2009, 19, 8360.	6.7	88
579	Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 3253.	6.7	103
580	Carbon nanotube network modified carbon fibre paper for Li-ion batteries. Energy and Environmental Science, 2009, 2, 393.	30.8	106
581	Foam-like, microstructural SnO ₂ –carbon composite thin films synthesized via a polyol-assisted thermal decomposition method. Dalton Transactions, 2009, , 723-729.	3.3	2
582	V2O5 Nanorods with Improved Cycling Stability for Li Intercalation. Materials Research Society Symposia Proceedings, 2009, 1170, 76.	0.1	0
583	Electrochemical Performance of Nanocrystalline SnO ₂ -Carbon Nanotube Composites as Anode in Lithium-Ion Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 1474-1478.	0.9	4
584	Various Carbon Metal Nanocomposites for Lithium Ion Batteries and Direct Methanol Fuel Cells. ECS Transactions, 2008, 6, 205-213.	0.5	0
585	lonic conductivity and electrochemical stability of poly(methylmethacrylate)–poly(ethylene oxide) blend-ceramic fillers composites. Journal of Physics and Chemistry of Solids, 2008, 69, 243-248.	4.0	79
586	Controlled synthesis of \hat{l}_{\pm} -Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries. Journal of Power Sources, 2008, 184, 456-461.	7.8	117
587	Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems. Journal of Power Sources, 2008, 185, 1386-1391.	7.8	153
588	Preparation of \hat{l}_{\pm} -Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2008, 53, 4213-4218.	5.2	86
589	Lithium-polymer battery based on an ionic liquid–polymer electrolyte composite for room temperature applications. Electrochimica Acta, 2008, 53, 6460-6463.	5.2	38
590	Preparation of Low Loading Pt/C Catalyst by Carbon Xerogel Method for Ethanol Electrooxidation. Catalysis Letters, 2008, 122, 111-114.	2.6	9
591	Synthesis and characterization of SrBi4Ti4O15ferroelectric filler based composite polymer electrolytes for lithium ion batteries. Polymer Bulletin, 2008, 60, 351-361.	3.3	9
592	The Effect of Morphological Modification on the Electrochemical Properties of SnO ₂ Nanomaterials. Advanced Functional Materials, 2008, 18, 455-461.	14.9	306
593	Phase transformation in Bi-2223/AgMg alloyed PIT tapes during different sintering processing and its influence on critical current density. Physica C: Superconductivity and Its Applications, 2008, 468, 2305-2312.	1.2	0
594	Electrochemical studies on LiFe1â^'xCoxPO4/carbon composite cathode materials synthesized by citrate gel technique for lithium-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 93-98.	3.5	43

#	Article	IF	Citations
595	Polyoxometallate-stabilized Pt–Ru catalysts on multiwalled carbon nanotubes: Influence of preparation conditions on the performance of direct methanol fuel cells. Journal of Power Sources, 2008, 184, 361-369.	7.8	48
596	Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. Journal of Power Sources, 2008, 182, 359-364.	7.8	118
597	Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. Journal of Power Sources, 2008, 184, 485-488.	7.8	66
598	Polyoxometallate-stabilized platinum catalysts on multi-walled carbon nanotubes for fuel cell applications. Electrochimica Acta, 2008, 53, 6410-6416.	5.2	33
599	Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders. Carbon, 2008, 46, 35-40.	10.3	56
600	Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 2008, 46, 229-235.	10.3	361
601	Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries. Solid State Ionics, 2008, 179, 2379-2382.	2.7	71
602	Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochemistry Communications, 2008, 10, 165-169.	4.7	114
603	Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochemistry Communications, 2008, 10, 1724-1727.	4.7	419
604	Paper-like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochemistry Communications, 2008, 10, 1781-1784.	4.7	86
605	Hexagonalâ€Shaped Tin Glycolate Particles: A Preliminary Study of Their Suitability as Liâ€lon Insertion Electrodes. Chemistry - an Asian Journal, 2008, 3, 854-861.	3.3	11
606	High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V ₂ O ₅ Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte. Chemistry of Materials, 2008, 20, 7044-7051.	6.7	205
607	Electrochemical Deposition of Porous Co(OH)[sub 2] Nanoflake Films on Stainless Steel Mesh for Flexible Supercapacitors. Journal of the Electrochemical Society, 2008, 155, A926.	2.9	64
608	NiCo[sub 2]O[sub 4]/C Nanocomposite as a Highly Reversible Anode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2008, 11, A64.	2.2	79
609	Reduction-Free Synthesis of Carbon-Encapsulated SnO ₂ Nanowires and Their Superiority in Electrochemical Performance. Journal of Physical Chemistry C, 2008, 112, 11286-11289.	3.1	31
610	A Novel Approach for Real Mass Transformation from $V < sub > 2 < / sub > 0 < sub > 5 < / sub > Particles to Nanorods. Crystal Growth and Design, 2008, 8, 3661-3665.$	3.0	52
611	Shape Evolution of \hat{l} ±-Fe[sub 2]O[sub 3] and Its Size-Dependent Electrochemical Properties for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A196.	2.9	89
612	Electrochemistry of LiV[sub 3]O[sub 8] Nanoparticles Made by Flame Spray Pyrolysis. Electrochemical and Solid-State Letters, 2008, 11, A46.	2.2	58

#	Article	IF	CITATIONS
613	Microstructure Observations of Ag and Ag-Alloy Sheathed Bi2223 Tapes. IEEE Transactions on Applied Superconductivity, 2007, 17, 3095-3098.	1.7	1
614	Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium. Journal of Alloys and Compounds, 2007, 427, 94-100.	5.5	107
615	Study of Oxygen Incorporation in PLD \${m MgB}_{2}\$ Films by Rutherford Backscattering Spectroscopy. IEEE Transactions on Applied Superconductivity, 2007, 17, 2875-2878.	1.7	3
616	Nanostructured SnSb/Carbon Nanotube Composites Synthesized by Reductive Precipitation for Lithium-lon Batteries. Chemistry of Materials, 2007, 19, 2406-2410.	6.7	157
617	Low-Temperature Synthesis of Polypyrrole-Coated LiV[sub 3]O[sub 8] Composite with Enhanced Electrochemical Properties. Journal of the Electrochemical Society, 2007, 154, A633.	2.9	62
618	Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angewandte Chemie - International Edition, 2007, 46, 750-753.	13.8	756
619	Si–Cu/carbon composites with a core–shell structure for Li-ion secondary battery. Carbon, 2007, 45, 1928-1933.	10.3	44
620	Mesoporous organo-silica nanoarray for energy storage media. Electrochemistry Communications, 2007, 9, 71-75.	4.7	20
621	Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochemistry Communications, 2007, 9, 119-122.	4.7	167
622	Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery. Electrochemistry Communications, 2007, 9, 1877-1880.	4.7	83
623	Titania nanotube supported tin anodes for lithium intercalation. Electrochemistry Communications, 2007, 9, 697-702.	4.7	36
624	Novel nano-silicon/polypyrrole composites for lithium storage. Electrochemistry Communications, 2007, 9, 941-946.	4.7	141
625	Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage. Electrochemistry Communications, 2007, 9, 915-919.	4.7	40
626	A new class of cathode materials for rechargeable magnesium batteries: Organosulfur compounds based on sulfur–sulfur bonds. Electrochemistry Communications, 2007, 9, 1913-1917.	4.7	132
627	Noticeable improvement in the desorption temperature from graphite in rehydrogenated MgH2/graphite composite. Materials Science & Discourse and Processing, 2007, 447, 180-185.	5.6	36
628	Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes. Journal of Power Sources, 2007, 174, 823-827.	7.8	43
629	Synthesis and characterization of SnO2–polypyrrole composite for lithium-ion battery. Journal of Power Sources, 2007, 174, 1183-1187.	7.8	96
630	Synthesis and electrochemical properties of LiY0.1V3O8. Journal of Power Sources, 2007, 174, 548-551.	7.8	31

#	Article	IF	Citations
631	Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. Journal of Power Sources, 2007, 172, 410-415.	7.8	127
632	Improvement in hydrogen cycling properties of magnesium through added graphite. Materials Letters, 2007, 61, 3163-3166.	2.6	18
633	In-situ fabrication and characterisation of nanostructured Mn3O4 powders for electronic and electrochemical applications. Materials Letters, 2007, 61, 3189-3192.	2.6	9
634	Improved Hydrogen Storage of LiBH ₄ Catalyzed Magnesium. Journal of Physical Chemistry C, 2007, 111, 12495-12498.	3.1	58
635	Amorphous Carbon-Coated Silicon Nanocomposites:  A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2007, 111, 11131-11138.	3.1	211
636	DSC study of the effect of milling conditions on the hydrogen storage properties of boron. Journal of Materials Science, 2007, 42, 3985-3989.	3.7	3
637	Effects of milling conditions on hydrogen storage properties of graphite. Journal of Materials Science, 2007, 42, 5437-5441.	3.7	7
638	Synthesis and electrochemical properties of V2O5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. Journal of Power Sources, 2007, 174, 1032-1035.	7.8	112
639	An investigation of polypyrrole–LiV3O8 composite cathode materials for lithium-ion batteries. Journal of Power Sources, 2007, 174, 1095-1099.	7.8	66
640	Synthesis and electrochemical performance of doped LiCoO2 materials. Journal of Power Sources, 2007, 174, 828-831.	7.8	81
641	Synthesis of functional oxides by a novel mechanical milling–electric discharge method. Journal of Materials Chemistry, 2006, 16, 4488-4493.	6.7	2
642	Preparation of spherical clusters of metal oxide nanorods and their hydrogen storage behavior. Materials Letters, 2006, 60, 3891-3894.	2.6	14
643	Synthesis and Characterization of LiFePO[sub 4] and LiTi[sub 0.01]Fe[sub 0.99]PO[sub 4] Cathode Materials. Journal of the Electrochemical Society, 2006, 153, A25.	2.9	99
644	Spherical Clusters of NiO Nanoshafts for Lithium-Ion Battery Anodes. Electrochemical and Solid-State Letters, 2006, 9, A524.	2.2	92
645	Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites. Journal of Alloys and Compounds, 2006, 422, 299-304.	5.5	70
646	Characterisation of olivine-type LiMnxFe1â^xPO4 cathode materials. Journal of Alloys and Compounds, 2006, 425, 362-366.	5.5	45
647	Thermal stability and hydrogen storage property of Mg1.9Cu0.1Nix (x=1.8, 1.9, 2.0 and 2.1) alloys. Journal of Alloys and Compounds, 2006, 426, 335-340.	5.5	4
648	Electrochemical Hydrogen Storage in Single-Walled Carbon Nanotube Paper. Journal of Nanoscience and Nanotechnology, 2006, 6, 713-718.	0.9	11

#	Article	IF	CITATIONS
649	In situ fabrication of spherical porous tin oxide via a spray pyrolysis technique. Electrochimica Acta, 2006, 51, 3680-3684.	5.2	19
650	Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica Acta, 2006, 51, 4634-4638.	5.2	265
651	Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes. Electrochemistry Communications, 2006, 8, 245-250.	4.7	51
652	A new rapid synthesis technique for electrochemically active materials used in energy storage applications. Electrochemistry Communications, 2006, 8, 434-438.	4.7	33
653	Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochimica Acta, 2006, 51, 5246-5249.	5.2	101
654	In situ high temperature optical microscopy study of phase evolution in YBa2Cu3O7â^î^films prepared by a fluorine-free sol–gel route. Physica C: Superconductivity and Its Applications, 2006, 436, 62-67.	1.2	5
655	Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 2006, 159, 254-257.	7.8	312
656	Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. Journal of Power Sources, 2006, 159, 241-244.	7.8	48
657	Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries. Journal of Power Sources, 2006, 159, 332-335.	7.8	29
658	A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. Journal of Power Sources, 2006, 159, 282-286.	7.8	77
659	Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. Journal of Power Sources, 2006, 159, 345-348.	7.8	91
660	Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. Journal of Power Sources, 2006, 162, 1451-1454.	7.8	152
661	Enhanced electrochemical properties of nonstoichiometric amorphous Mg2Ni1.3 electrodes. Journal of Applied Electrochemistry, 2006, 36, 11-16.	2.9	2
662	Effect of substrate surface modification using Ag nano-dots on the improvement of J c and microstructures in YBa2Cu3O7 thin films grown on LaAlO3 (100) by pulsed laser deposition. Journal of Electroceramics, 2006, 16, 605-609.	2.0	1
663	Electrochemical and magnetic characterization of LiFePO4 and LiO.95MgO.05FePO4 cathode materials. Journal of Solid State Electrochemistry, 2006, 11, 177-185.	2.5	31
664	An investigation on electrochemical behavior of nanosize zinc sulfide electrode in lithium-ion cells. Journal of Solid State Electrochemistry, 2006, 10, 250-254.	2.5	34
665	Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. Journal of Power Sources, 2006, 159, 287-290.	7.8	103
666	Electrochemical hydrogen storage properties of nonstoichiometric amorphous MgNi1+xMgNi1+xâ€"carbon composites (x=0.05x=0.05â€"0.3). International Journal of Hydrogen Energy, 2006, 31, 2032-2039.	7.1	30

#	Article	IF	Citations
667	Conducting Poly(aniline) Nanotubes and Nanofibers: Controlled Synthesis and Application in Lithium/Poly(aniline) Rechargeable Batteries. Chemistry - A European Journal, 2006, 12, 3082-3088.	3.3	171
668	Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries. Angewandte Chemie - International Edition, 2006, 45, 6896-6899.	13.8	656
669	Nanomaterials for Lithium-ion Rechargeable Batteries. Journal of Nanoscience and Nanotechnology, 2006, 6, 1-15.	0.9	127
670	Electron Transfer Behavior of Monolayer Protected Nanoclusters and Nanowires of Silver and Gold. Journal of Nanoscience and Nanotechnology, 2006, 6, 3464-3469.	0.9	7
671	Synthesis and characterization of one-dimensional CdSe nanostructures. Applied Physics Letters, 2006, 88, 193115.	3.3	35
672	Spray Pyrolyzed PbO-Carbon Nanocomposites as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2006, 153, A787.	2.9	58
673	Electro-Oxidation of Ethanol on Pt-WO[sub 3]â^•C Electrocatalyst. Electrochemical and Solid-State Letters, 2006, 9, A423.	2.2	49
674	Electrochemical Performance of Co[sub 3]O[sub 4]â€"C Composite Anode Materials. Electrochemical and Solid-State Letters, 2006, 9, A315.	2.2	122
675	Non-aqueous synthesis of crystalline Co3O4 powders using alcohol and cobalt chloride as a versatile reaction system for controllable morphology. Journal of Power Sources, 2005, 147, 264-268.	7.8	32
676	Nano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries. Journal of Power Sources, 2005, 146, 180-184.	7.8	85
677	Synthesis of nanocrystalline transition metal and oxides for lithium storage. Journal of Power Sources, 2005, 146, 487-491.	7.8	26
678	Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. Journal of Power Sources, 2005, 146, 448-451.	7.8	172
679	Lithium insertion in Si–TiC nanocomposite materials produced by high-energy mechanical milling. Journal of Power Sources, 2005, 146, 190-194.	7.8	37
680	Electrochemical properties of carbon coated LiFePO4 cathode materials. Journal of Power Sources, 2005, 146, 521-524.	7.8	106
681	A study on the charge–discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochimica Acta, 2005, 50, 3667-3673.	5.2	255
682	An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta, 2005, 50, 4649-4654.	5.2	241
683	Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites. Carbon, 2005, 43, 1392-1399.	10.3	151
684	Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochimica Acta, 2005, 51, 23-28.	5.2	263

#	Article	IF	Citations
685	Enhancement of Ionic Conductivity of PEO Based Polymer Electrolyte by the Addition of Nanosize Ceramic Powders. Journal of Nanoscience and Nanotechnology, 2005, 5, 1135-1140.	0.9	41
686	Microstructures and Enhancement of Critical Current Density in <tex>\$rm YBa_2rm Cu_3rm O_7\$</tex> Thin Films Grown by Pulsed Laser Deposition on Various Single Crystal Substrates Modified by Ag Nano-Dots. IEEE Transactions on Applied Superconductivity, 2005, 15, 3046-3049.	1.7	10
687	Third harmonics due to surface barrier in high-temperature superconductor. Journal of Applied Physics, 2005, 97, 10B105.	2.5	5
688	Improvement of critical current density and thermally assisted individual vortex depinning in pulsed-laser-deposited YBa2Cu3O7â~l´thin films on SrTiO3 (100) substrate with surface modification by Ag nanodots. Journal of Applied Physics, 2005, 97, 10B107.	2.5	8
689	Silicon/Disordered Carbon Nanocomposites for Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2005, 152, A2211.	2.9	86
690	Electrochemical performance of SnSb and Sn/SnSb nanosize powders as anode materials in Li-ion cells. Journal of Alloys and Compounds, 2005, 400, 234-238.	5. 5	45
691	Potential Application of Solid Electrolyte P11 OH in Ni/MH Batteries. Synthetic Metals, 2005, 152, 57-60.	3.9	9
692	Start-Fine-Particle Carbon-enriched Li0.98Mg0.02FePO4 Synthesized by A Novel Modified Solid-State Reaction. Synthetic Metals, 2005, 153, 113-116.	3.9	13
693	Characterization of Nanoparticles of LiMn ₂ O ₄ Synthesized by a One-Step Intermediate-Temperature Solid-State Reaction. Journal of Nanoscience and Nanotechnology, 2004, 4, 162-166.	0.9	8
694	The morphology, periodical modulation structure and effects of heat treatment on the superconductivity of (Tl, Pb)(Sr, Ba)-1223 single crystals. Superconductor Science and Technology, 2004, 17, 696-700.	3.5	8
695	Effects of precursor powders and sintering processes on the superconducting properties of MgB2. Superconductor Science and Technology, 2004, 17, S528-S532.	3.5	25
696	Characterization of Nanocrystalline Si-MCMB Composite Anode Materials. Electrochemical and Solid-State Letters, 2004, 7, A250.	2.2	115
697	The development of Y Ba2Cu3Ox thin films using a fluorine-free sol–gel approach for coated conductors. Superconductor Science and Technology, 2004, 17, 1420-1425.	3.5	23
698	Characterization of LiM[sub x]Fe[sub 1â^x]PO[sub 4] (M=Mg,â€,Zr,â€,Ti) Cathode Materials Prepared by the Sol-Gel Method. Electrochemical and Solid-State Letters, 2004, 7, A503.	2.2	105
699	Electrochemical properties of nanosize Sn-coated graphite anodes in lithium-ion cells. Journal of Applied Electrochemistry, 2004, 34, 187-190.	2.9	17
700	A novel cureless pure lead oxide plate for valve-regulated lead-acid batteries. Journal of Applied Electrochemistry, 2004, 34, 1127-1133.	2.9	0
701	Ni(OH)2 Tubes with Mesoscale Dimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries. Angewandte Chemie - International Edition, 2004, 43, 4212-4216.	13.8	215
702	Physical and electrochemical properties of doped lithium iron phosphate electrodes. Electrochimica Acta, 2004, 50, 443-447.	5.2	106

#	Article	IF	Citations
703	New approach for synthesis of carbon-mixed LiFePO4 cathode materials. Electrochimica Acta, 2004, 50, 421-426.	5.2	58
704	Electrochemical and in situ synchrotron X-ray diffraction studies of Li[Li0.3Cr0.1Mn0.6]O2 cathode materials. Solid State Ionics, 2004, 167, 183-189.	2.7	6
705	Nano-sized Al2O3 doping effects on the critical current density of MgB2 superconductors. Ceramics International, 2004, 30, 1581-1583.	4.8	14
706	Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochemistry Communications, 2004, 6, 689-692.	4.7	246
707	Electrochemical characteristics of tin-coated MCMB graphite as anode in Lithium-ion cells. Electrochimica Acta, 2004, 50, 517-522.	5.2	41
708	Preparation and properties of spherical LiNi0.75Co0.25O2 as a cathode for lithium-ion batteries. Electrochimica Acta, 2004, 50, 435-441.	5.2	19
709	Tungsten Disulfide Nanotubes for Lithium Storage. Electrochemical and Solid-State Letters, 2004, 7, A321.	2.2	102
710	Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Materials Letters, 2004, 58, 1788-1791.	2.6	170
711	Enhancement of critical current density in YBa2Cu3O7ÂÂ thin films grown using PLD on YSZ (001) surface modified with Ag nano-dots. Journal Physics D: Applied Physics, 2004, 37, 1824-1828.	2.8	19
712	<i>In-Situ</i> Fabrication of Nanostructured Cobalt Oxide Powders by Spray Pyrolysis Technique. Journal of Nanoscience and Nanotechnology, 2004, 4, 861-866.	0.9	25
713	Lead-coated glass fibre mesh grids for lead–acid batteries. Journal of Applied Electrochemistry, 2003, 33, 1057-1061.	2.9	6
714	Effect of Ti Doping on the Superconductivities of MgB2/Fe Wires. Journal of Low Temperature Physics, 2003, 131, 687-692.	1.4	4
715	Beneficial effects of red lead on non-cured plates for lead-acid batteries. Journal of Power Sources, 2003, 113, 371-375.	7.8	14
716	Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. Journal of Power Sources, 2003, 114, 292-297.	7.8	82
717	Preparation and characterization of carbon nanotubes for energy storage. Journal of Power Sources, 2003, 119-121, 16-23.	7.8	71
718	Al-based anode materials for Li-ion batteries. Journal of Power Sources, 2003, 119-121, 84-87.	7.8	80
719	Synthesis and characterization of LiCoxMnyNi1â^'xâ^'yO2 as a cathode material for secondary lithium batteries. Journal of Power Sources, 2003, 119-121, 184-188.	7.8	70
720	Stoichiometry-controlled high-performance LiCoO2 electrode materials prepared by a spray solution technique. Journal of Power Sources, 2003, 119-121, 195-200.	7.8	10

#	Article	IF	Citations
721	Preparation of orthorhombic LiMnO2 material via the sol–gel process. Journal of Power Sources, 2003, 119-121, 221-225.	7.8	34
722	Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. Journal of Power Sources, 2003, 119-121, 422-426.	7.8	127
723	LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials. Journal of Power Sources, 2003, 124, 231-236.	7.8	82
724	AC response studying on MgB2 superconductor by Maley's method. Physica C: Superconductivity and Its Applications, 2003, 386, 631-637.	1.2	3
725	Magnetic flux distribution in a superconducting core of Bi-2223 tape. Physica C: Superconductivity and Its Applications, 2003, 388-389, 405-406.	1.2	4
726	Significant enhancement of flux pinning in MgB2 superconductor through nano-Si addition. Physica C: Superconductivity and Its Applications, 2003, 385, 461-465.	1.2	59
727	Effect of the processing parameters of MgB1.8(SiC)0.1/Fe tapes on the critical current density. Physica C: Superconductivity and Its Applications, 2003, 387, 321-327.	1.2	27
728	Effects of magnetic field on vortex dynamics in (Tl,Pb)(Sr,Ba)2Ca2Cu3Oy single crystal. Physica C: Superconductivity and Its Applications, 2003, 399, 15-21.	1.2	0
729	Zinc doping effects on the structure, transport and magnetic properties of La0.7Sr0.3Mn1-xZnxO3 manganite oxide. Science and Technology of Advanced Materials, 2003, 4, 149-152.	6.1	21
730	Enhanced performance of VRLA batteries with a novel spirally-wound electrode design. Journal of Power Sources, 2003, 113, 241-244.	7.8	10
731	Tin-based composite materials as anode materials for Li-ion batteries. Journal of Power Sources, 2003, 119-121, 45-49.	7.8	36
732	Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 189-194.	7.8	18
733	A novel cureless paste for positive plates in valve-regulated batteries. Journal of Power Sources, 2003, 122, 195-200.	7.8	4
734	Magnetic hysteresis and relaxation in Bi2212 single crystals doped with Fe and Pb. IEEE Transactions on Applied Superconductivity, 2003, 13, 3770-3773.	1.7	0
735	Structure and electrochemical characteristics of LiMn0.7M0.3O2 (M=Ti, V, Zn, Mo, Co, Mg, Cr). Journal of Alloys and Compounds, 2003, 348, 231-235.	5.5	24
736	A comparison of ag and Ag-alloy sheathed Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 2003, 13, 3004-3007.	1.7	3
737	Characterization of thermal conductivity and mechanical properties of Ag-alloy sheathed Bi(Pb)-Sr-Ca-Cu-O superconductor tape. IEEE Transactions on Applied Superconductivity, 2003, 13, 2956-2959.	1.7	7
738	Superconductivity, critical current density, and flux pinning in MgB2â^3x(SiC)x/2 superconductor after SiC nanoparticle doping. Journal of Applied Physics, 2003, 94, 1850-1856.	2.5	91

#	Article	IF	Citations
739	Transport critical current density in Fe-sheathed nano-SiC doped MgB/sub 2/ wires. IEEE Transactions on Applied Superconductivity, 2003, 13, 3199-3202.	1.7	57
740	Properties of superconducting MgB2wires:in situversusex situreaction technique. Superconductor Science and Technology, 2003, 16, 639-644.	3.5	69
741	Effects of the field dependent J/sub c/ on the vertical levitation force between a superconductor and a magnet. IEEE Transactions on Applied Superconductivity, 2003, 13, 2142-2145.	1.7	4
742	Calculation of the temperature dependent AC susceptibility of superconducting disks. IEEE Transactions on Applied Superconductivity, 2003, 13, 3742-3745.	1.7	4
743	Effect of grain size and doping level of sic on the superconductivity and critical current density in MgB/sub 2/ superconductor. IEEE Transactions on Applied Superconductivity, 2003, 13, 3273-3276.	1.7	21
744	The effect of pre-sintering and deformation rate on critical current density behaviour of Bi-2223 bulk samples made by sinter forging. Superconductor Science and Technology, 2003, 16, 804-808.	3.5	0
745	Direct visualization of iron sheath shielding effects in MgB2superconducting wires. Superconductor Science and Technology, 2003, 16, L33-L36.	3.5	23
746	Transmission electron microscopy evidence for phase transformation from Bi2Sr2CuO6 to Bi2Sr2Ca2Cu3O10. Applied Physics Letters, 2002, 81, 688-690.	3.3	7
747	Nanocrystalline $\langle 1 \rangle \hat{1} \pm \langle 1 \rangle -Ni(OH) \langle SUB \rangle 2 \langle SUB \rangle$ Prepared by Ultrasonic Precipitation. Journal of Nanoscience and Nanotechnology, 2002, 2, 45-46.	0.9	5
748	Substitution-induced pinning in MgB2superconductor doped with SiC nano-particles. Superconductor Science and Technology, 2002, 15, 1587-1591.	3.5	130
749	Comparison studies of spiral growth mechanism in Bi2Sr2CaCu2Oy and YBa2Cu3Oy high temperature superconducting single crystals. International Journal of Modern Physics B, 2002, 16, 9-18.	2.0	2
750	Synthesis of Layered-Structure LiMn[sub $1\hat{a}^2x$]Cr[sub x]O[sub 2] by the Pechini Method and Characterization as a Cathode for Rechargeable Li/LiMnO[sub 2] Cells. Journal of the Electrochemical Society, 2002, 149, A792.	2.9	23
751	Effect of various mechanical deformation processes on critical current density and microstructure in MgB2tapes and wires. Superconductor Science and Technology, 2002, 15, 1490-1493.	3.5	9
752	Influence of Ag, Cu and Fe sheaths on MgB2superconducting tapes. Superconductor Science and Technology, 2002, 15, 236-240.	3.5	52
753	Pinning characteristics of MgB2near the melting curve. Superconductor Science and Technology, 2002, 15, 619-623.	3.5	1
754	Effects of grain size and grain boundaries on the transport and magnetic properties of charge-ordered Nd0.5Sr0.5MnO3material. Superconductor Science and Technology, 2002, 15, 423-426.	3.5	2
755	Fabrication and Properties of Spray-Dried Nanofeatured Spherical Ni(OH) ₂ Materials. Journal of Nanoscience and Nanotechnology, 2002, 2, 675-678.	0.9	3
756	Transverse micro- and mesotexture distribution characteristics on the core surface of (Bi,Pb)2Sr2Ca2Cu3O10/Ag superconductor tape. Superconductor Science and Technology, 2002, 15, 241-246.	3.5	1

#	Article	IF	Citations
757	The peak effect in Fe-doped Bi-2212 single crystals. Superconductor Science and Technology, 2002, 15, 356-360.	3.5	3
758	Lithium Storage Properties of Ball Milled Ni-57 mass%Sn Alloy. Materials Transactions, 2002, 43, 63-66.	1.2	16
759	Calculation of the hysteretic force between a superconductor and a magnet. Physical Review B, 2002, 66, .	3.2	79
760	Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Applied Physics Letters, 2002, 81, 3419-3421.	3.3	770
761	A new process for fabrication of metal-hydride electrodes for nickel–metal hydride batteries. Journal of Alloys and Compounds, 2002, 330-332, 760-765.	5.5	6
762	Ni/Al/Co-substituted \hat{i}_{\pm} -Ni(OH)2 as electrode materials in the nickel metal hydride cell. Journal of Alloys and Compounds, 2002, 330-332, 802-805.	5.5	31
763	Nanosize cobalt oxides as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2002, 340, L5-L10.	5.5	90
764	Electrochemical properties of orthorhombic LiMnO2 prepared by one-step middle-temperature solid-state reaction. Journal of Alloys and Compounds, 2002, 346, 255-259.	5.5	12
765	Study of structure, transport, paramagnetic and ferromagnetic properties of La0.8Sr0.2Mn1â~xZnxO3perovskite manganite. Superconductor Science and Technology, 2002, 15, 346-350.	3.5	17
766	Up-conversion luminescence of ytterbium and thulium codoped potassium yttrium double tungstate crystal. Crystal Research and Technology, 2002, 37, 1318-1324.	1.3	11
767	AC susceptibility of type-II superconductor strips with geometric barrier. Physica C: Superconductivity and Its Applications, 2002, 377, 416-420.	1.2	8
768	Improvement of critical current density in the Cu/MgB2 and Ag/MgB2 superconducting wires using the fast formation method. Physica C: Superconductivity and Its Applications, 2002, 382, 187-193.	1.2	33
769	Single- and multi-filamentary Fe-sheathed MgB2 wires. Physica C: Superconductivity and Its Applications, 2002, 382, 349-354.	1.2	29
770	Structure and electrochemistry of LiCrxMn1â°'xO2 cathode for lithium-ion batteries. Solid State Ionics, 2002, 148, 359-366.	2.7	13
771	Studies on electrochemical performance of partially reduced MnO2 used as cathode for MH–MnO2 rechargeable battery. Journal of Power Sources, 2002, 109, 11-16.	7.8	12
772	Investigation of cobalt oxides as anode materials for Li-ion batteries. Journal of Power Sources, 2002, 109, 142-147.	7.8	182
773	Structure and spin glass behaviour in non-metallic Yb2CoMnO6 perovskite manganite. Journal of Magnetism and Magnetic Materials, 2002, 246, 86-92.	2.3	17
774	Fabrication and critical current density in 16-filament stainless steel/Fe/MgB2 square wire. Solid State Communications, 2002, 124, 59-62.	1.9	15

#	Article	IF	CITATIONS
775	Electrochemical performance of nanocrystalline lead oxide in VRLA batteries. Journal of Alloys and Compounds, 2001, 327, 141-145.	5 . 5	22
776	Graphite–Tin composites as anode materials for lithium-ion batteries. Journal of Power Sources, 2001, 97-98, 211-215.	7.8	91
777	Physical and electrochemical characterization of LiNi0.8Co0.2O2 thin-film electrodes deposited by laser ablation. Journal of Power Sources, 2001, 97-98, 298-302.	7.8	26
778	Spin glass state in Gd2CoMnO6 perovskite manganite. Solid State Communications, 2001, 118, 27-30.	1.9	34
779	Effect of oxygen partial pressure on processing conditions and phase transformation in Ag/Bi-2223 tapes. Physica C: Superconductivity and Its Applications, 2001, 351, 371-378.	1.2	17
780	Effect of various mechanical deformation techniques on critical current densities of Ag/Bi-2223 tapes. Physica C: Superconductivity and Its Applications, 2001, 354, 349-352.	1.2	14
781	Optimized NdBa2Cu3Oy thin films deposited by eclipsed pulsed laser ablation. Physica C: Superconductivity and Its Applications, 2001, 356, 205-211.	1.2	6
782	Crystal growth patterns in MgO seeded Y1.8Ba2.4Cu3.4Oy/Ag melt-texturing process. Physica C: Superconductivity and Its Applications, 2001, 357-360, 734-737.	1.2	12
783	Segregation growth of Bi2(Sr,Ca)2CuOy single crystals by using self-fluxes. Journal of Materials Science Letters, 2001, 20, 1455-1457.	0.5	0
784	Upper Critical Field Hc2 on c Axis of Ag/Bi-2223 Polycrystal Tape. Journal of Superconductivity and Novel Magnetism, 2001, 14, 465-468.	0.5	2
785	Effect of Various Intermediate Deformation Techniques on Jc and Grain Texture for Ag/Bi-2223 Tapes. Journal of Superconductivity and Novel Magnetism, 2001, 14, 539-543.	0.5	0
786	Characteristics of micro-texture and meso-texture in (Bi, Pb)2Sr2Ca2Cu3O10superconducting tapes. Superconductor Science and Technology, 2001, 14, 471-478.	3. 5	13
787	Magneto-optical images of Ag/Bi-2223 tapes processed by flat rolling, "sandwich" rolling and pressing. IEEE Transactions on Applied Superconductivity, 2001, 11, 3764-3767.	1.7	4
788	Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi,) Tj ETQq0 0 0	rgBJ_ <i>[</i> Over	lock 10 Tf 50
789	Enhancement of vortex pinning by Josephson coupling of two-dimensional pancake vortices in heavy lead-doped Bi2-xPbxSr2CaCu2Oy. Superconductor Science and Technology, 2001, 14, 479-485.	3.5	8
790	Intrinsic deformation behaviour in pressed Bi-Sr-Ca-Cu-O tapes. Superconductor Science and Technology, 2001, 14, 862-869.	3.5	0
791	Phase transformation characteristics of BSCCO tapes processed via cryogenic and room temperature pressing. Superconductor Science and Technology, 2001, 14, 533-538.	3. 5	2
792	Effect of the sinter-forging deformation rate on properties of Bi-2223 current leads. IEEE Transactions on Applied Superconductivity, 2001, 11, 2551-2554.	1.7	5

#	Article	IF	CITATIONS
793	Comparative studies on "sandwich" rolling and flat rolling in processing Ag/Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 2001, 11, 3752-3755.	1.7	8
794	Superconductivity and flux pinning in Y and heavily Pb codoped Bi-2212 single crystals. Journal of Applied Physics, 2001, 89, 7669-7671.	2.5	22
795	Effect of grain connectivity and density on the magnetoresistance in Ca or Li doped lanthanum manganites. Solid State Communications, 2000, 117, 53-56.	1.9	12
796	The flux pinning potential of Ag/Bi-2223 tapes for H//c-axis. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1353-1354.	1,2	2
797	Increase in Tc of YBa2Cu3Oy by oxygen plasma treatment. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2451-2452.	1.2	O
798	The effect of deformation reduction in hot-pressing on critical current density of (Bi,) Tj ETQq0 0 0 rgBT /Overloc 2455-2456.	k 10 Tf 50 1.2	547 Td (Pb): 1
799	Improvement in critical current density of Agî—,Mg alloy sheathed Bi-2223 tapes by cryogenic pressing. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2581-2582.	1.2	O
800	Innovative nanosize lithium storage alloys with silica as active centre. Journal of Power Sources, 2000, 88, 278-281.	7.8	120
801	Structural, physical and electrochemical characterisation of LiNixCo1â^'xO2 solid solutions. Journal of Power Sources, 2000, 85, 279-283.	7.8	36
802	Structure characteristics and lithium ionic conductivity of La(0.57 \hat{a}^2 2x/3)SrxLi0.3TiO3 perovskites. Journal of Materials Science, 2000, 35, 4289-4291.	3.7	19
803	Orientation Distribution of Grain Planes in Polycrystal Ag/Bi-2223 Tape. Journal of Superconductivity and Novel Magnetism, 2000, 13, 441-446.	0.5	6
804	A Modal of Twin Domains in YBa2(Cu1â^'xCox)3Oy. Journal of Superconductivity and Novel Magnetism, 2000, 13, 129-136.	0.5	3
805	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2000, 13, 633-638.	0.5	0
806	Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2000, 306, 249-252.	5.5	101
807	Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling. Journal of Alloys and Compounds, 2000, 299, L12-L15.	5 . 5	60
808	Influence of Ca ₂ PbO ₄ on Phase Formation and Electrical Properties of (Bi,Pb) ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀ /Ag Superconducting Composites. Journal of the American Ceramic Society, 2000, 83, 1675-1680.	3.8	7
809	Softening of Bi2212 crystals and growth mechanism of Bi2212 and Bi2201 grown at the KCl flux surface. Superconductor Science and Technology, 1999, 12, 77-80.	3.5	3
810	General design formula for tapered, conduction-cooled current lead utilizing high temperature superconducting tapes. Superconductor Science and Technology, 1999, 12, 181-183.	3.5	3

#	Article	IF	CITATIONS
811	The effect of Zn(OH)2 addition on the electrode properties of nickel hydroxide electrodes. Journal of Materials Research, 1999, 14, 1916-1921.	2.6	4
812	Study of the magnetic phase transition in La0.7Ca0.3MnO3 using a magneto-optical method. Applied Physics Letters, 1999, 74, 3014-3016.	3.3	12
813	Critical role of phase transformation during processing of Ag/Bi:2223 tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2436-2439.	1.7	11
814	High electrical performance Ag-sheathed Bi-2223 multifilamentary tapes prepared by an optimised PIT processing route. IEEE Transactions on Applied Superconductivity, 1999, 9, 2730-2733.	1.7	2
815	A high gradient magnetic separator fabricated using Bi-2223/Ag HTS tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 394-397.	1.7	6
816	Effect of short processing time on Bi-2223 phase formation kinetics and critical current in Bi-2223/Ag tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2734-2737.	1.7	0
817	Effect of cryogenic deformation on microstructure and critical current density in Ag/Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2726-2729.	1.7	2
818	Fabrication and properties of some Ag-alloy sheathed Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2710-2713.	1.7	7
819	Development of long length Bi-based/Ag tapes and experimental magnets. IEEE Transactions on Applied Superconductivity, 1999, 9, 2605-2608.	1.7	2
820	Significantly enhanced critical current density in Bi-2223/Ag multifilamentary tapes by hot pressing. IEEE Transactions on Applied Superconductivity, 1999, 9, 2742-2745.	1.7	4
821	Critical current degradation caused by winding process of Bi-2223/Ag HTS wire in the form of a coil. IEEE Transactions on Applied Superconductivity, 1999, 9, 138-141.	1.7	11
822	SMALL ANGLE GRAIN BOUNDARY IN YBa2Cu3Oy SUPERCONDUCTOR. International Journal of Modern Physics B, 1999, 13, 2285-2290.	2.0	0
823	An electrometric method for evaluation of the corrosion of lead alloys. Journal of Power Sources, 1999, 77, 56-63.	7.8	5
824	LiAlÎ Ni1â Î O2 solid solutions as cathodic materials for rechargeable lithium batteries. Solid State lonics, 1999, 116, 271-277.	2.7	59
825	Improvement of electrochemical properties of the spinel LiMn2O4 using a Cr dopant effect. Solid State lonics, 1999, 120, 95-101.	2.7	82
826	Structure characterisation and lithium insertion in La0.33NbO3 perovskite. Solid State Ionics, 1999, 124, 37-43.	2.7	11
827	Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries. Journal of Power Sources, 1999, 83, 156-161.	7.8	131
828	Title is missing!. Journal of Applied Electrochemistry, 1999, 29, 177-183.	2.9	3

#	Article	IF	CITATIONS
829	Title is missing!. Journal of Applied Electrochemistry, 1999, 29, 1-6.	2.9	20
830	Electrochemical study on orthorhombic LiMnO2 as cathode in rechargeablelithium batteries. Journal of Applied Electrochemistry, 1999, 29, 1423-1426.	2.9	14
831	Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of the Electrochemical Society, 1999, 146, 3606-3612.	2.9	223
832	Surface modification of Mg2Ni alloy in an acid solution of copper sulfate and sulfuric acid. Journal of Alloys and Compounds, 1999, 285, 267-271.	5. 5	32
833	Mg2Ni hydride electrodes prepared by sintering and subsequent ball milling with Ni powders. Journal of Alloys and Compounds, 1999, 293-295, 536-540.	5.5	14
834	Mg2Ni-based hydrogen storage alloys for metal hydride electrodes. Journal of Alloys and Compounds, 1999, 293-295, 675-679.	5.5	28
835	The Electrode Properties of Mg[sub 1.9]Al[sub 0.1]Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1] Alloy by Mechanical Grinding with Ni Powders. Electrochemical and Solid-State Letters, 1999, 2, 164.	2.2	10
836	Electrode properties of Mg2Ni alloy ball-milled with cobalt powder. Electrochimica Acta, 1998, 44, 353-355.	5.2	10
837	Formation of FeTi Hydrogen Storage Alloys by Ball-milling. Journal of Materials Science Letters, 1998, 17, 1825-1830.	0.5	13
838	Mg2Ni alloy for metal hydride electrodes. Journal of Materials Science, 1998, 33, 4671-4675.	3.7	10
839	Spin-glass state in Y0.7Ca0.3MnO3. Journal of Magnetism and Magnetic Materials, 1998, 182, L1-L4.	2.3	30
840	Magnetization studies and irreversibility behavior of high-Tc superconducting Bi(Pb)-2223 multifilamentary Ag-sheathed PIT tapes prepared from differently synthesized precursor powders. Solid State Communications, 1998, 108, 319-324.	1.9	0
841	Large irreversible magnetization arising from the domain freezing in La0.7Ca0.3MnO3 perovskite. Solid State Communications, 1998, 108, 661-665.	1.9	18
842	Effect of Cu-site Co, Ni and Ga substitution on the superconductivity of tetragonal LaBaCaCu3O7 system. Physica C: Superconductivity and Its Applications, 1998, 301, 205-214.	1.2	4
843	The oxygenation processes of YBa2Cu3O6+ with silver additions. Physica C: Superconductivity and Its Applications, 1998, 303, 202-208.	1.2	5
844	Charging efficiency of metal-hydride electrodes. Journal of Power Sources, 1998, 70, 110-113.	7.8	2
845	Secondary aqueous lithium-ion batteries with spinel anodes and cathodes. Journal of Power Sources, 1998, 74, 198-201.	7.8	67
846	Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. Journal of Power Sources, 1998, 76, 141-146.	7.8	63

#	Article	IF	Citations
847	Studies on the diffusion coefficient of hydrogen through metal hydride electrodes. International Journal of Hydrogen Energy, 1998, 23, 177-182.	7.1	25
848	Surface and electrode properties of Zr(V0.25Ni0.75)2 alloy treated with ultrasound-solution. Journal of Alloys and Compounds, 1998, 265, 281-285.	5.5	12
849	On the charge/discharge behavior of Ti2Ni electrode in 6 M KOH aqueous and deuterium oxide solutions. Journal of Alloys and Compounds, 1998, 267, 224-230.	5.5	20
850	Colossal and constant magnetoresistance over a large temperature range between 230 and 4.2 K in La0.8Li0.2MnO3 prepared by a partial melting technique. Journal of Alloys and Compounds, 1998, 270, L10-L12.	5.5	5
851	The effect of chemical coating with Ni on the electrode properties of Mg2Ni alloy. Journal of Alloys and Compounds, 1998, 280, 290-293.	5.5	28
852	Phase development and kinetics of high temperature Bi-2223 phase. Journal of Alloys and Compounds, 1998, 281, 280-289.	5.5	19
853	Microstructural study of Bi2223/Ag tapes made using a two-stage sintering procedure. Superconductor Science and Technology, 1998, 11, 505-508.	3.5	13
854	Effect of ball milling materials and methods on powder processing of Bi2223 superconductors. Superconductor Science and Technology, 1998, 11, 1153-1159.	3.5	16
855	Study of microstructures of Ag-sheathed (BiPbSrCaCuO) multifilamentary tapes in various stages of processing. Journal of Materials Research, 1998, 13, 279-283.	2.6	0
856	Powder production methods of Bi-Pb-Sr-Ca-Cu-O superconductors. Superconductor Science and Technology, 1998, 11, 1166-1172.	3.5	14
857	Effect of pressing and Li doping on superconducting properties of Ag-sheathed Bi-2223 tapes. Superconductor Science and Technology, 1998, 11, 1061-1064.	3.5	17
858	Magnetic separation techniques and HTS magnets. Superconductor Science and Technology, 1998, 11, 1071-1074.	3.5	7
859	The oxygenation kinetics of -(0-30%)Ag superconductors. Superconductor Science and Technology, 1998, 11, 1193-1199.	3.5	3
860	Silver-clad superconducting tapes fabricated by different mechanical processing. Superconductor Science and Technology, 1998, 11, 1053-1056.	3.5	1
861	The formation mechanism and the development of grain texture in the preparation of Ag-sheathed Bi-2223 superconducting tapes. Superconductor Science and Technology, 1998, 11, 770-776.	3.5	8
862	Cryogenic deformation process of high temperature superconductors. Superconductor Science and Technology, 1998, 11, 781-787.	3.5	8
863	Optimization of processing to improve critical current density of Ag/Bi-2223 tapes. Superconductor Science and Technology, 1998, 11, 915-920.	3.5	11
864	Effect of the phase compositions at the final stage of heat treatment on the critical current density in Bi:2223/Ag tapes. Superconductor Science and Technology, 1998, 11, 1057-1060.	3.5	8

#	Article	IF	CITATIONS
865	Recrystallization effects and grain size in Bi-2223 tapes. Superconductor Science and Technology, 1998, 11, 1082-1086.	3.5	9
866	Design, fabrication and properties of 1 T (4.2 K) Bi-2223 high-superconducting prototype magnet. Superconductor Science and Technology, 1998, $11,535-539$.	3.5	6
867	Visualization of magnetic flux distribution in Bi(Pb)-2223/Ag multifilamentary tapes. Superconductor Science and Technology, 1998, 11, 1017-1023.	3.5	8
868	Comparative studies of the fishtail effect associated with surface pinning and oxygen vacancy network in spiral and layer-by-layer grown single crystals. Superconductor Science and Technology, 1998, 11, 1041-1044.	3.5	0
869	Vapour cooled high current leads utilizing Bi-2223/Ag tapes. Superconductor Science and Technology, 1998, 11, 1091-1094.	3.5	6
870	Critical current density significantly enhanced by hot pressing in Bi-2223/Ag multifilamentary tapes. Superconductor Science and Technology, 1998, 11, 1101-1104.	3.5	12
871	Optimal reduction in rolling Ag-sheathed Bi-2223 multifilamentary tapes. Superconductor Science and Technology, 1998, 11, 299-303.	3.5	13
872	Colossal magnetoresistance in La1â^'xLixMnO3. Journal of Applied Physics, 1998, 83, 7177-7179.	2.5	57
873	Fabrication and Characterization of High-T _c Superconducting Continuous-Tube-Forming/Filling Bi(Pb)-2223/Ag Composites and Coils. Materials and Manufacturing Processes, 1998, 13, 337-357.	4.7	1
874	Large low-field magnetoresistance over a wide temperature range induced by weak-link grain boundaries in La0.7Ca0.3MnO3. Applied Physics Letters, 1998, 73, 396-398.	3.3	128
875	The formation and distribution of texture microstructure produced by mechanical deformation in silver-sheathed BSCCO superconductors. Superconductor Science and Technology, 1998, 11, 1011-1016.	3.5	12
876	Finite voltages along the c-direction of Bi-2223/Ag multifilament tape. Superconductor Science and Technology, 1997, 10, 342-346.	3.5	2
877	Improvement of flux pinning by thermo-mechanical treatment of Bi-2223/Ag superconducting tapes. Superconductor Science and Technology, 1997, 10, 409-415.	3.5	14
878	Construction and normal zone propagation analysis of high-T/sub c/ superconducting Bi(Pb)-2223/Ag class II coils and magnets. IEEE Transactions on Applied Superconductivity, 1997, 7, 893-895.	1.7	3
879	Enhanced flux pinning from CuO inclusions in Bi2Sr2CaCu2Oycrystals. Journal of Applied Physics, 1997, 81, 533-535.	2.5	13
880	Microstructure and critical current of hot-pressed (Bi,Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10/ceramics. IEEE Transactions on Applied Superconductivity, 1997, 7, 1849-1852.	1.7	0
881	Effect on critical current density and irreversibility behaviour of mechanical deformation of Bi-(Pb)-Sr-Ca-Cu-O superconducting tapes. IEEE Transactions on Applied Superconductivity, 1997, 7, 1841-1844.	1.7	4
882	Effect of sintering temperature on phase composition and J/sub c/ of Ag-sheathed Bi-2223 single and multifilamentary tapes. IEEE Transactions on Applied Superconductivity, 1997, 7, 1845-1848.	1.7	5

#	Article	IF	Citations
883	Comparative studies on single crystals and superconducting Bi-(Pb)-Sr-Ca-Cu-O tapes. IEEE Transactions on Applied Superconductivity, 1997, 7, 2219-2222.	1.7	1
884	(Bi, Pb)2Sr2Ca2Cu3O10+x Ag-clad high-Tc superconducting coil and its magnetic field properties. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 75, 813-826.	0.6	8
885	High voltage generation with a high T/sub c/ superconducting resonant circuit. IEEE Transactions on Applied Superconductivity, 1997, 7, 881-884.	1.7	19
886	Electrical application of high T/sub c/ superconducting saturable magnetic core fault current limiter. IEEE Transactions on Applied Superconductivity, 1997, 7, 1009-1012.	1.7	76
887	Properties of Zr0.5Ti0.5(V0.25Mn0.15Ni0.6)2 alloy ball-milled with nickel powder. Journal of Alloys and Compounds, 1997, 248, 146-150.	5.5	9
888	Comparative study of electrochemical behaviour of single-crystalline and polycrystalline LaNi5 alloy electrodes. Journal of Alloys and Compounds, 1997, 248, 159-163.	5.5	5
889	Hydrogen desorption and electrode properties of Zr0.8Ti0.2(V0.3Ni0.6M0.1)2. Journal of Alloys and Compounds, 1997, 256, 40-44.	5.5	19
890	Properties of chemically prepared MmNi4.52Mn0.49 alloy. Journal of Alloys and Compounds, 1997, 260, 260-264.	5.5	0
891	The effect of ball milling and rapid quenching on the catalytic activity of the Cu30Al70 alloy. Materials Letters, 1997, 33, 79-83.	2.6	4
892	Effect of final annealing temperature on critical current density of Ag/Bi-(Pb)-Sr-Ca-Cu-O tapes. Applied Superconductivity, 1997, 5, 171-177.	0.5	6
893	Multi-spirals in spiral grown Bi2Sr2CaCu2Oy crystals. Journal of Materials Science Letters, 1997, 16, 858-859.	0.5	1
894	Title is missing!. Journal of Materials Science, 1997, 32, 2629-2635.	3.7	11
895	Long lengths of silver-clad Bi2223 superconducting tapes with high current-carrying capacity. Applied Superconductivity, 1997, 5, 163-170.	0.5	9
896	On the role of Bi2Sr2Ca1Cu2O8 and Bi2Sr2Cu1O6 on the weak links and critical currents in (Bi,Pb)2Sr2Ca2Cu2O10/Ag superconducting tapes. Applied Superconductivity, 1997, 5, 179-185.	0.5	0
897	High temperature superconducting magnetic levitation train. Applied Superconductivity, 1997, 5, 201-204.	0.5	7
898	Morphologies of square shape spirals and (110) twins in spiral-grown Bi2Sr2CaCu2Oy crystals. Physica C: Superconductivity and Its Applications, 1997, 273, 349-353.	1.2	7
899	Influence of bismuth on hydrogen and oxygen evolution on lead-calcium-tin-aluminium grid alloys. Journal of Power Sources, 1997, 66, 159-164.	7.8	6
900	Influence of alloying with bismuth on electrochemical behaviour of lead-calcium-tin grid alloys. Journal of Power Sources, 1997, 66, 107-113.	7.8	16

#	Article	IF	Citations
901	Spiral growth of Bi 2 Sr 2 CaCu 2 O y single crystals using KCl flux technique. Journal of Crystal Growth, 1997, 173, 380-385.	1.5	9
902	Studies on the performance of Ti2Ni1â^'xAlx hydrogen storage alloy electrodes. Journal of Alloys and Compounds, 1996, 233, 225-230.	5. 5	20
903	Effects of yttrium additions on the electrode performance of magnesium-based hydrogen storage alloys. Journal of Alloys and Compounds, 1996, 233, 236-240.	5.5	69
904	Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.% Ti2Ni. Journal of Alloys and Compounds, 1996, 240, 229-234.	5.5	30
905	Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi5-based alloy electrodes. Journal of Power Sources, 1996, 63, 267-270.	7.8	27
906	Crystalline Mg2Ni obtained by mechanical alloying. Journal of Alloys and Compounds, 1996, 244, 184-189.	5.5	25
907	Development of Bi(Pb)-2223/Ag pancake-shaped and solenoidal coils. IEEE Transactions on Applied Superconductivity, 1996, 6, 102-105.	1.7	9
908	Flux pinning in high-Jc tape. Solid State Communications, 1996, 97, 339-343.	1.9	9
909	Scaling of Jc-B curves in BSCCO/Ag tapes. Solid State Communications, 1996, 100, 187-190.	1.9	7
910	Evaluation of leadâ€"calciumâ€"tinâ€"aluminium grid alloys for valve-regulated lead/acid batteries. Journal of Power Sources, 1996, 59, 123-129.	7.8	31
911	Conductor design with high-Tc superconducting Bi(Pb)—2223/Ag multifilamentary tapes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 40, 217-223.	3.5	5
912	Effect of mechanical deformation on the mass density of Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10 wire and tape. Applied Superconductivity, 1996, 4, 17-24.	0.5	15
913	Effects of potassium-boron addition on the performance of titanium based hydrogen storage alloy electrodes. International Journal of Hydrogen Energy, 1996, 21, 373-379.	7.1	28
914	Effect of rolling reduction on the transport property, microstructure, phase formation and fill factor of high-Tc superconducting Bi-(Pb)-Sr-Ca-Cu-O tapes. Cryogenics, 1996, 36, 903-913.	1.7	6
915	Critical current densities of high-Tc Bi(Pb)-2223 wire-in-tube, continuous-tube-forming/filling and silver-alloy double-pancake coils at 77 K. Applied Superconductivity, 1996, 4, 343-347.	0.5	1
916	On the discharging process of titanium-based hydrogen storage alloy electrode via a.c. impedance analysis. Journal of Power Sources, 1996, 62, 75-79.	7.8	7
917	Discharge behaviour of Mg2Ni-type hydrogen-storage alloy electrodes in 6 M KOH solution by electrochemical impedance spectroscopy. Journal of Power Sources, 1996, 63, 209-214.	7.8	33
918	Thermal stability in high-T c coil and magnet design by process control of Bi(Pb)-2223/Ag multifilamentary tapes. Journal of Superconductivity and Novel Magnetism, 1996, 9, 605-614.	0.5	0

#	Article	IF	CITATIONS
919	Irreversible magnetization and critical currents in silver-sheathed (Bi, Pb)2Sr2Ca2Cu3O10 + y tape. Physica Status Solidi A, 1996, 157, 427-437.	1.7	O
920	Effect of sintering periods on the microstructure and electrical transport properties of high-Tc superconducting Bi–(Pb)–Sr–Ca–Cu–O tapes. Journal of Materials Research, 1996, 11, 1101-1107.	2.6	11
921	Effect of sintering periods on the pinning force, activation energy and microstructure of high-superconducting Bi - (Pb) - Sr - Ca - Cu - O tapes. Superconductor Science and Technology, 1996, 9, 104-112.	3.5	26
922	-B-Tsurface of high-tape. Superconductor Science and Technology, 1996, 9, 1060-1065.	3.5	6
923	The effect of mechanical deformation on silver - core interface and critical current density in Ag - Bi-2223 single- and multifilament tapes. Superconductor Science and Technology, 1996, 9, 875-880.	3.5	32
924	Preparation of Ag - Bi-2223 tape by controlling the phase evolution prior to sintering. Superconductor Science and Technology, 1996, 9, 881-887.	3.5	33
925	Improved critical current of superconducting Bi2223 - Ag tapes for current lead application by addition of `large' silver particles. Superconductor Science and Technology, 1996, 9, 888-892.	3.5	8
926	Structure and magnetic properties of the ternary compound. Journal of Physics Condensed Matter, 1996, 8, 2881-2886.	1.8	4
927	Effect of cobalt addition on the performance of titanium-based hydrogen-storage electrodes. Journal of Power Sources, 1995, 55, 197-203.	7.8	39
928	Mechanism of deformation and "sandwich―rolling process in Ag-clad Bi-based composite tapes. Applied Superconductivity, 1995, 3, 599-605.	0.5	10
929	Field, temperature, and angle dependence of the critical current density in Bi2Sr2CaCu2O10/Ag ribbons. Journal of Superconductivity and Novel Magnetism, 1995, 8, 37-42.	0.5	4
930	Mechanism of early capacity loss of Ti2Ni hydrogen-storage alloy electrode. Journal of Power Sources, 1995, 55, 101-106.	7.8	41
931	Characteristics of magnesium-based hydrogen-storage alloy electrodes. Journal of Power Sources, 1995, 55, 263-267.	7.8	69
932	Vortex state and flux pinning in Bi2223/Ag tape. Solid State Communications, 1995, 95, 515-518.	1.9	7
933	Sandwich Roiling, Jc, and pinning energy in Ag-sheathed BPSCCO superconducting tapes. Journal of Electronic Materials, 1995, 24, 1801-1804.	2.2	2
934	Fabrication of Ag-sheathed Bi-superconducting tapes and coils. IEEE Transactions on Applied Superconductivity, 1995, 5, 1267-1270.	1.7	1
935	Preparation of high T/sub c/ superconducting coils for consideration of their use in a prototype fault current limiter. IEEE Transactions on Applied Superconductivity, 1995, 5, 1051-1054.	1.7	40
936	Effect of silver on phase formation and superconducting properties of Bi-2223/Ag tapes. IEEE Transactions on Applied Superconductivity, 1995, 5, 1830-1833.	1.7	8

#	Article	IF	CITATIONS
937	Anisotropy of the critical current in silver sheathed (Bi,Pb)2Sr2Ca2Cu3O10tapes. Journal of Applied Physics, 1995, 78, 1123-1130.	2.5	40
938	Equilibrium phase diagrams in the system CuO–PbO–Ag. Journal of Materials Research, 1995, 10, 2933-2937.	2.6	6
939	Study on interfaces and microstructural defects in Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+ytapes. Superconductor Science and Technology, 1995, 8, 168-173.	3.5	17
940	Transport and magnetisation measurements of Bi2223/Ag tapes and the role of granularity on critical current limitation. IEEE Transactions on Applied Superconductivity, 1995, 5, 1391-1394.	1.7	14
941	Magnetic properties of a novel Prâ€Feâ€Ti phase. Journal of Applied Physics, 1994, 75, 7120-7121.	2.5	24
942	Intergranular and intragranular critical currents in silver-sheathed Pb-Bi-Sr-Ca-Cu-O tapes. Physical Review B, 1994, 50, 10218-10224.	3.2	80
943	Magnetoresistance and V-Icurves of Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3O10+ytape. Physical Review B, 1994, 49, 15312-15316.	3.2	26
944	Intrinsic critical current of Ag-clad (Bi,Pb)2Sr2Ca2Cu3O z tapes. Journal of Superconductivity and Novel Magnetism, 1994, 7, 809-812.	0.5	4
945	Long multifilament Bi-2223 Ag-sheathed superconducting tapes and solenoids. Journal of Superconductivity and Novel Magnetism, 1994, 7, 829-833.	0.5	6
946	Phase diagram and microstructure in the system CuO-PbO-Ag. Journal of Superconductivity and Novel Magnetism, 1994, 7, 69-71.	0.5	2
947	Microstructures of high-J c melt-textured YBa2Cu3O7?x /Ag superconductors. Journal of Superconductivity and Novel Magnetism, 1994, 7, 947-950.	0.5	3
948	Compensation effect, impurity scattering and superconductivity in 123 compounds. Physica B: Condensed Matter, 1994, 194-196, 1957-1958.	2.7	4
949	Low-temperature surface micro-encapsulation of Ti2Ni hydrogen-storage alloy powders. Journal of Power Sources, 1994, 52, 295-299.	7.8	27
950	Development of microstructure and superconductivity of silver-clad Bi(2223) composite tapes in the process of heat treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 23, 58-65.	3.5	17
951	Effect of silver on the processing and properties of tapes. Applied Superconductivity, 1994, 2, 191-199.	0.5	17
952	Flux pinning in Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+y tape. Solid State Communications, 1994, 92, 735-739.	1.9	9
953	Novel ternary iron-rich, rare-earth iron silicides: R3(Fe1â^'x Si x)22 (x â^1/4 0.16). Hyperfine Interactions, 1994, 94, 1921-1927.	0.5	1
	• • • • • • • • • • • • • • • • • • •		

 $M\tilde{A}\P separate study of a novel series of ternary rare-earth iron-rich intermetallics: ND(Fe1-xTi~x~)6+y(x~\hat{a}^1\!\!/\!\!4)~Tj~ETQq0~\underset{O.5}{O}~rgBT~\underset{O}{/}Overlock~1$

54

954

#	Article	IF	CITATIONS
955	Effect of silver additions on properties of high-temperature superconducting tapes. Materials Letters, 1994, 18, 336-340.	2.6	12
956	On the superconductivity suppression in the oxide systems Y1 \hat{a} °x Pr x Ba2Cu3 \hat{a} °y MyOz (M = Zn and Al). Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 177, 437-440.	2.1	3
957	Conductivity and microstructure of bismuth oxide-based electrolytes with enhanced stability. Solid State Ionics, 1993, 66, 201-206.	2.7	17
958	Differential resistance and critical current distribution in an Ag-clad (BiPb)2Sr2Ca2Cu3O10+y tape. Solid State Communications, 1993, 88, 241-244.	1.9	8
959	T(I)-O-T(II) structural transition and superconductivity in the Sr-based 123 compounds YSr2Cu2.8Mo0.1W0.1Oy. Solid State Communications, 1993, 88, 813-819.	1.9	4
960	Equilibrium Phase Diagrams in the Systems PbO-Ag and CuO-Ag. Journal of the American Ceramic Society, 1993, 76, 2663-2664.	3.8	63
961	Critical current density and irreversibility behaviour in Ag-sheathed Bi-based superconducting wires fabricated using a controlled melt procedure. Applied Superconductivity, 1993, 1, 1515-1522.	0.5	19
962	Enhanced flux pinning through a phase formation-decomposition-recovery process in Ag-sheathed Bi(Pb)SrCaCuO wires. IEEE Transactions on Applied Superconductivity, 1993, 3, 1135-1138.	1.7	7
963	Microstructures, Jcand flux pinning in Ag─Clad Bi─Pb─Sr─Ca─Cu─O wires. Phase Transitions, 1993,	4 1, <i>3</i> 79-85.	О
964	Ag-sheathed Bi(Pb)SrCaCuO superconducting tapes. Superconductor Science and Technology, 1993, 6, 297-314.	3.5	213
965	Effects of substitution for Cu in CuO2planes with dopants of different electron configuration in YBa2Cu3O7. Journal of Physics Condensed Matter, 1993, 5, 3623-3634.	1.8	10
966	Effect of interfacial layers on the mechanical properties of Ag-clad Bi-based superconducting composite tapes. Superconductor Science and Technology, 1993, 6, 195-198.	3.5	36
967	Silver-doping effects on the multiple-transition of the complex susceptibility and superconducting properties of melt-textured YBa2Cu3Oymaterials. Superconductor Science and Technology, 1993, 6, 315-321.	3.5	10
968	Phase evolution in silver-doped BiPbSrCaCuO(2223)/Ag superconducting composites. Journal of Materials Research, 1993, 8, 2187-2190.	2.6	22
969	60 K superconductivity in a Y1-xCaxBa2Cu3-xAlxO6.35system-a possible local hole effect. Superconductor Science and Technology, 1992, 5, 569-574.	3.5	1
970	Influence of nonlinear charge transfer on the behaviour of the mobile hole concentration and Tcin the YBa2Cu3O7-ysystem. Superconductor Science and Technology, 1992, 5, 295-298.	3.5	3
971	Microstructure and defects in Ag-clad Bi-Pb-Sr-Ca-Cu-O wires prepared through a controlled melt process. Superconductor Science and Technology, 1992, 5, 591-598.	3.5	67
972	Improvement of flux pinning in the Agâ€clad Biâ€Pbâ€Srâ€Caâ€Cuâ€O wires through the use of a short period m processing. Applied Physics Letters, 1992, 60, 2929-2931.	elt 3.3	80

#	Article	lF	Citations
973	Magnetic field dependence of the critical current density for the bismuth-based bulk high-Tc superconductors. Journal of Materials Science, 1992, 27, 3043-3049.	3.7	1
974	Characterization of Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3O10-x multifilamentary tapes. Cryogenics, 1992, 32, 1038-1041.	1.7	8
975	Mechanism of the Tc enhancement in Bi2Sr2CaCu2O8+y by sodium doping. Physica C: Superconductivity and Its Applications, 1991, 185-189, 811-812.	1.2	8
976	On the new phase (Bi,Pb)3Sr2Ca2CuOyin the Bi-Pb-Sr-Ca-Cu-O system. Superconductor Science and Technology, 1991, 4, 203-206.	3.5	60
977	Transmission electron microscope investigation and magnetic properties of HIPed Bi-Pb-Sr-Ca-Cu-O. Superconductor Science and Technology, 1991, 4, 21-26.	3.5	25
978	Critical currents in silverâ€sheathed (Bi,Pb)2Sr2Ca2Cu3O10â^'ysuperconducting tapes. Applied Physics Letters, 1991, 59, 3171-3173.	3.3	21
979	Effect of Ca2CuO3 excess on superconducting properties in the Bi–Pb–Sr–Ca–Cu–O system. Journal of Materials Research, 1991, 6, 2287-2290.	2.6	18
980	Rapid Formation of the 110 K Phase in BI-Pb-Sr-Ca-Cu-O through Freeze-Drying Powder Processing. Journal of the American Ceramic Society, 1990, 73, 1771-1773.	3.8	38
981	Effect of silver addition on superconductivity in the Bi1.6Pb0.4Sr1.6Ca2Cu3O10?y system. Journal of Materials Science: Materials in Electronics, 1990, 1, 30-33.	2.2	10
982	Cu valence states in superconducting Biî—¸Pbî—¸Srî—¸Caî—¸Cuî—¸O system. Journal of Solid State Chemistry, 1990, 289-297.	87. 2.9	18
983	Improved single crystal growth in the Bi-Sr-Ca-Cu-O system using a sealed cavity technique. Journal of Crystal Growth, 1990, 100, 303-308.	1.5	14
984	Critical current density in superconducting Bi-Pb-Sr-Ca-Cu-O wires and coils. Superconductor Science and Technology, 1990, 3, 138-142.	3.5	42
985	Superconducting properties of Au/Bi-Pb-Sr-Ca-Cu-O composites. Superconductor Science and Technology, 1990, 3, 210-212.	3.5	18
986	Superconductivity in a Agâ€doped Biâ€Pbâ€Srâ€Caâ€Cuâ€O system. Applied Physics Letters, 1990, 56, 493-494.	3.3	46
987	Superconductivity in the Bi-Pb-Sr-Ca-Cu-O system with oxide additions. Superconductor Science and Technology, 1989, 2, 274-278.	3.5	32
988	Stability of superconducting phases in Bi-Sr-Ca-Cu-O and the role of Pb doping. Physical Review B, 1989, 40, 5266-5269.	3.2	49
989	Enhancement of critical current density in the Bi-Pb-Sr-Ca-Cu-O system by addition of Ca2CuO3. Superconductor Science and Technology, 1989, 2, 308-310.	3.5	18
990	Crystallite alignment of YBa2Cu3O7-xthrough texture growth. Superconductor Science and Technology, 1989, 2, 212-215.	3.5	8

#	Article	IF	CITATIONS
991	Twins, kinks and cracks in dense superconducting YBa2Cu3O7â°'x. Journal of Materials Science Letters, 1989, 8, 1147-1150.	0.5	6
992	Superlattices in Pb-doped Bi-Sr-Ca-Cu-O and in a non-superconducting Sr-Ca-Cu-O precursor. Philosophical Magazine Letters, 1989, 59, 213-217.	1.2	2
993	Labile Cu3+ ions correlated with superconducting properties in YBa2Cu3O7â^x. Solid State Communications, 1988, 68, 221-225.	1.9	31
994	Dependence of the Superconducting Transition Temperature on Radii of Alkali and Alkaline Earth Dopants in Y ₁ Ba ₂ Cu ₃ O _{7â^²x} . Physica Status Solidi (B): Basic Research, 1988, 147, K153.	1.5	7
995	The electrochemistry of YBa2Cu3O7–8 in aqueous potassium hydroxide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 248, 461-466.	0.1	24
996	Phase changes in Y1Ba2Cu3O7-xinduced by Fe2O3and V2O5dopants. Journal of Physics C: Solid State Physics, 1988, 21, L127-L131.	1.5	8
997	Labile Cu3+ions in the Bi-Sr-Ca-Cu-O system and the effects of varying the composition and heat treatment. Superconductor Science and Technology, 1988, 1, 78-82.	3.5	20
998	A comparison of the stability of Bi2Sr2CaCu2O8+ywith YBa2Cu3O6.5+yin various solutions. Superconductor Science and Technology, 1988, 1, 194-197.	3.5	33
999	Processing, characterisation and properties of the superconducting Tl-Ba-Ca-Cu-O system. Superconductor Science and Technology, 1988, 1, 83-87.	3.5	4
1000	Superlattices and stacking faults in Bi ₂ (Sr,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 382 Td (Ca) <sub:< td=""><td>>3C</td><td>u₂</td></sub:<>	>3C	u ₂
1001	Surface-modified Mg/sub 2/Ni-type negative electrode materials for Ni-MH battery. , 0, , .		3
1002	The kinetics of PbSO/sub 4//PbO/sub 2/ on Pb-Ca-Sn-Al grid alloys with bismuth additions at different temperature. , 0, , .		0
1002			0
	Studies on the electrochemical impedance spectroscopy of Zr-based Laves phase metal hydride		
1003	Studies on the electrochemical impedance spectroscopy of Zr-based Laves phase metal hydride electrodes. , 0, , .		1
1003	Studies on the electrochemical impedance spectroscopy of Zr-based Laves phase metal hydride electrodes., 0,,. Development of high energy nickel-metal hydride cell., 0,, Structural and electrochemical characteristics of Li/sub 1+x/Mn/sub 2+x/O/sub 4/ and LiMn/sub 2/O/sub	0.3	1
1003 1004 1005	Studies on the electrochemical impedance spectroscopy of Zr-based Laves phase metal hydride electrodes., 0,,. Development of high energy nickel-metal hydride cell., 0,,. Structural and electrochemical characteristics of Li/sub 1+x/Mn/sub 2+x/O/sub 4/ and LiMn/sub 2/O/sub 4-Î// for secondary lithium batteries., 0,,. Characterization of Pd Nano-Thin Films for High-Speed Switchable Mirrors. Materials Science Forum,	0.3	1 1