Bronwyn Laycock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2515254/publications.pdf

Version: 2024-02-01

172457 133252 3,882 87 29 59 citations g-index h-index papers 87 87 87 4520 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of Natural Weathering on Aesthetics, Thermal and Mechanical Properties of Completely Biodegradable Composites. Composites Science and Technology, 2022, , 173-188.	0.6	1
2	Zeolite shape selectivity impact on LDPE and PP catalytic pyrolysis products and coke nature. Sustainable Energy and Fuels, 2022, 6, 1587-1602.	4.9	15
3	High-resolution micro-computed tomography reveals cracking in a hydrophobic composite; a new mechanism for mobilisation in controlled release applications. Biosystems Engineering, 2021, 203, 44-54.	4.3	1
4	Magnetic poly(acrylic acid)-based hydrogels for rapid ammonium sorption and efficient sorbent separation from sewage. Environmental Science and Ecotechnology, 2021, 6, 100097.	13.5	10
5	Extraction and determination of the Pimelea toxin simplexin in complex plant-polymer biocomposites using ultrahigh-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry. Analytical and Bioanalytical Chemistry, 2021, 413, 5121-5133.	3.7	4
6	Probing Peptide Nanowire Conductivity by THz Nanoscopy. Nanotechnology, 2021, 33, .	2.6	3
7	Biopolymer Composites for Slow Release to Manage Pimelea Poisoning in Cattle. Proceedings (mdpi), 2020, 36, .	0.2	O
8	Modelling the Controlled Release of Toxins in a Rumen Environment. Proceedings (mdpi), 2020, 36, .	0.2	0
9	Adsorbents for the Sequestration of the Pimelea Toxin, Simplexin. Proceedings (mdpi), 2020, 36, .	0.2	O
10	Synthesis of starch graft-copolymers via reactive extrusion: Process development and structural analysis. Carbohydrate Polymers, 2020, 227, 115066.	10.2	34
11	Assessing the effect of aromatic residue placement on the $\hat{l}\pm$ -helical peptide structure and nanofibril formation of 21-mer peptides. Molecular Systems Design and Engineering, 2020, 5, 521-531.	3.4	4
12	Pyrolysis of brominated polyethylene as an alternative carbon fibre precursor. Polymer Degradation and Stability, 2020, 172, 109057.	5.8	11
13	Hydrocarbon hydrogen carriers for catalytic transfer hydrogenation of guaiacol. International Journal of Hydrogen Energy, 2020, 45, 27381-27391.	7.1	9
14	A review on Pimelea poisoning of livestock. Toxicon, 2020, 186, 46-57.	1.6	7
15	Geo-Agriculture: Reviewing Opportunities through Which the Geosphere Can Help Address Emerging Crop Production Challenges. Agronomy, 2020, 10, 971.	3.0	8
16	The volume of recyclable polyethylene terephthalate plastic in operating rooms – A one-month prospective audit. American Journal of Surgery, 2020, 220, 853-855.	1.8	11
17	Toxin Degradation by Rumen Microorganisms: A Review. Toxins, 2020, 12, 664.	3.4	37
18	Can Nitrogen Source and Nitrification Inhibitors Affect In-Season Nitrogen Supply?. Communications in Soil Science and Plant Analysis, 2020, 51, 2189-2204.	1.4	7

#	Article	IF	CITATIONS
19	Designing for effective controlled release in agricultural products: new insights into the complex nature of the polymer–active agent relationship and implications for use. Journal of the Science of Food and Agriculture, 2020, 100, 4723-4733.	3.5	6
20	Modified Poly(acrylic acid)-Based Hydrogels for Enhanced Mainstream Removal of Ammonium from Domestic Wastewater. Environmental Science & Environmenta	10.0	24
21	Mechanical Stability of Polyhydroxyalkanoate (PHA)-Based Wood Plastic Composites (WPCs). Journal of Polymers and the Environment, 2020, 28, 1571-1577.	5.0	10
22	Synthesis of starch graft-copolymers via reactive extrusion and their ammonium sorption properties. Chemical Engineering Journal, 2020, 398, 124291.	12.7	13
23	Rapid and solvent-free synthesis of pH-responsive graft-copolymers based on wheat starch and their properties as potential ammonium sorbents. International Journal of Biological Macromolecules, 2020, 149, 477-486.	7. 5	12
24	Factors Controlling Lifetimes of Polyhydroxyalkanoates and their Composites in the Natural Environment., 2020,, 339-382.		1
25	Thermophilic production of poly(3-hydroxybutyrate-co-3-hydrovalerate) by a mixed methane-utilizing culture. New Biotechnology, 2019, 53, 49-56.	4.4	16
26	Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. Environmental Science & Environmental Science	10.0	126
27	Public attitudes towards bioplastics – knowledge, perception and end-of-life management. Resources, Conservation and Recycling, 2019, 151, 104479.	10.8	139
28	Biomimetic Peptide Nanowires Designed for Conductivity. ACS Omega, 2019, 4, 1748-1756.	3.5	19
29	Influence of Different Nanocellulose Additives on Processing and Performance of PAN-Based Carbon Fibers. ACS Omega, 2019, 4, 9720-9730.	3.5	17
30	Public attitudes towards plastics. Resources, Conservation and Recycling, 2019, 147, 227-235.	10.8	114
31	Understanding the effect of copolymer content on the processability and mechanical properties of polyhydroxyalkanoate (PHA)/wood composites. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105437.	7.6	28
32	Polyhydroxyalkanoate (PHA) Bioplastics from Organic Waste., 2019,, 615-638.		12
33	The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Marine Pollution Bulletin, 2019, 142, 15-24.	5.0	137
34	Insights into the biodegradation of PHA / wood composites: Micro- and macroscopic changes. Sustainable Materials and Technologies, 2019, 21, e00099.	3.3	22
35	Understanding the Mobilization of a Nitrification Inhibitor from Novel Slow Release Pellets, Fabricated through Extrusion Processing with PHBV Biopolymer. Journal of Agricultural and Food Chemistry, 2019, 67, 2449-2458.	5.2	18
36	The morphology of crystallisation of PHBV/PHBV copolymer blends. European Polymer Journal, 2019, 112, 104-119.	5.4	14

3

#	Article	IF	Citations
37	Experimental data for extrusion processing and tensile properties of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) polymer and wood fibre reinforced PHBV biocomposites. Data in Brief, 2019, 22, 687-692.	1.0	9
38	Degradation and stabilization of polyurethane elastomers. Progress in Polymer Science, 2019, 90, 211-268.	24.7	345
39	Mechanical and physical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) under natural weathering. Polymer Testing, 2019, 73, 214-221.	4.8	36
40	Extrusion of wood fibre reinforced poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) biocomposites: Statistical analysis of the effect of processing conditions on mechanical performance. Polymer Degradation and Stability, 2019, 159, 1-14.	5.8	34
41	The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresources and Bioprocessing, 2019, 6, .	4.2	18
42	Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starchâ€degrader <i>Ruminococcus bromii</i> . Environmental Microbiology, 2018, 20, 324-336.	3.8	79
43	The Urgent Need to Re-engineer Nitrogen-Efficient Food Production for the Planet., 2018,, 35-69.		14
44	Microbial nanowires – Electron transport and the role of synthetic analogues. Acta Biomaterialia, 2018, 69, 1-30.	8.3	51
45	Environmental impact of biodegradable food packaging when considering food waste. Journal of Cleaner Production, 2018, 180, 325-334.	9.3	156
46	Rapid removal of ammonium from domestic wastewater using polymer hydrogels. Scientific Reports, 2018, 8, 2912.	3.3	53
47	Mechanical performance and long-term indoor stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) modified by non-reactive additives. European Polymer Journal, 2018, 98, 337-346.	5.4	27
48	Polyhydroxyalkanoate coatings restrict moisture uptake and associated loss of barrier properties of thermoplastic starch films. Journal of Applied Polymer Science, 2018, 135, 46379.	2.6	21
49	A simple methodology for improving the performance and sustainability of rigid polyurethane foam by incorporating industrial lignin. Industrial Crops and Products, 2018, 117, 149-158.	5.2	56
50	Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 2018, 58, 444-494.	10.9	134
51	Early-stage photodegradation of aromatic poly(urethane-urea) elastomers. Polymer Degradation and Stability, 2018, 157, 181-198.	5.8	12
52	Mechanical properties of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate)/wood flour composites: Effect of interface modifiers. Journal of Applied Polymer Science, 2018, 135, 46828.	2.6	18
53	Sorbents can tailor nitrogen release from organic wastes to match the uptake capacity of crops. Science of the Total Environment, 2018, 645, 1474-1483.	8.0	10
54	Wood-PHA Composites: Mapping Opportunities. Polymers, 2018, 10, 751.	4.5	59

#	Article	IF	CITATIONS
55	Cellulose Nanofibers as Rheology Modifiers and Enhancers of Carbonization Efficiency in Polyacrylonitrile. ACS Sustainable Chemistry and Engineering, 2017, 5, 3296-3304.	6.7	32
56	The effect of comonomer concentration and distribution on the photo-oxidative degradation of linear low density polyethylene films. Polymer, 2017, 119, 66-75.	3.8	26
57	Lifetime prediction of biodegradable polymers. Progress in Polymer Science, 2017, 71, 144-189.	24.7	416
58	The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polymer Degradation and Stability, 2017, 145, 102-119.	5.8	43
59	Investigation of the Bromination/Dehydrobromination of Long Chain Alkanes. Industrial & Description of Engineering Chemistry Research, 2017, 56, 9411-9418.	3.7	7
60	Mixed culture polyhydroxyalkanoate-rich biomass assessment and quality control using thermogravimetric measurement methods. Polymer Degradation and Stability, 2017, 144, 110-120.	5.8	35
61	The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents. Bioengineering, 2017, 4, 20.	3.5	13
62	The Opportunity for High-Performance Biomaterials from Methane. Microorganisms, 2016, 4, 11.	3.6	97
63	Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methaneâ€"The case for thermophilic bioprocessing. Journal of Environmental Chemical Engineering, 2016, 4, 3724-3733.	6.7	102
64	Near complete genome sequence of the animal feed probiotic, Bacillus amylolique faciens H57. Standards in Genomic Sciences, 2016 , 11 , 60 .	1.5	16
65	Ambient climate and soil effects on the headspace under clear mulch film. Agricultural Systems, 2016, 142, 41-50.	6.1	11
66	Fluxes in PHA-storing microbial communities during enrichment and biopolymer accumulation processes. New Biotechnology, 2016, 33, 61-72.	4.4	37
67	Value-added bioplastics from services of wastewater treatment. Water Practice and Technology, 2015, 10, 546-555.	2.0	23
68	Effect of soil environment on the photoâ€degradation of polyethylene films. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
69	The effect of common agrichemicals on the environmental stability of polyethylene films. Polymer Degradation and Stability, 2015, 120, 53-60.	5.8	19
70	Starch Applications. , 2014, , 381-419.		19
71	The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 2014, 39, 397-442.	24.7	166
72	Fractionation of microbial populations in a PHA accumulating mixed culture and associated PHA content and composition. International Journal of Biological Macromolecules, 2014, 71, 53-58.	7.5	9

#	Article	IF	CITATIONS
73	Crystallisation and fractionation of selected polyhydroxyalkanoates produced from mixed cultures. New Biotechnology, 2014, 31, 345-356.	4.4	45
74	Erratum to "The chemomechanical properties of microbial polyhydroxyalkanoates―[Prog. Polym. Sci. 38 (2013) 536–583]. Progress in Polymer Science, 2014, 39, 396.	24.7	0
75	In-line monitoring of thermal degradation of PHA during melt-processing by Near-Infrared spectroscopy. New Biotechnology, 2014, 31, 357-363.	4.4	31
76	Thermal properties and crystallization behavior of fractionated blocky and random polyhydroxyalkanoate copolymers from mixed microbial cultures. Journal of Applied Polymer Science, 2014, 131, .	2.6	29
77	Waste Activated Sludge as Biomass for Production of Commercial-Grade Polyhydroxyalkanoate (PHA). Waste and Biomass Valorization, 2013, 4, 117-127.	3.4	30
78	Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV). European Polymer Journal, 2013, 49, 904-913.	5.4	90
79	The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 2013, 38, 536-583.	24.7	372
80	Antagonism between transition metal pro-oxidants in polyethylene films. Polymer Degradation and Stability, 2012, 97, 1178-1188.	5.8	21
81	Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polymer Degradation and Stability, 2012, 97, 2301-2312.	5.8	80
82	Cell interactions with perfluoropolyether-based network copolymers. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 217-233.	3.5	20
83	Syntheesis and stereochemistry of acidolysis of some cyclohept-2-enylstannames and -silanes. Tetrahedron, 1988, 44, 3819-3831.	1.9	17
84	Silylcuprate Routes to Cyclohex-2-enylsilanes. Australian Journal of Chemistry, 1988, 41, 693.	0.9	8
85	Stereochemistry of acidolysis of cyclohept-2-enyl-silanes and -stannanes. Journal of the Chemical Society Chemical Communications, 1986, , 954.	2.0	7
86	Allylsilanes from allylchlorides and silylcuprates. Tetrahedron Letters, 1983, 24, 5785-5788.	1.4	27
87	Role of Catalyst Support's Physicochemical Properties on Catalytic Transfer Hydrogenation over Palladium Catalysts. ChemCatChem, 0, , .	3.7	2