Saoirse R Tracy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2515169/publications.pdf

Version: 2024-02-01

361413 477307 1,991 29 20 29 citations h-index g-index papers 32 32 32 2478 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The establishment of winter wheat root system architecture in field soils: The effect of soil type on root development in a temperate climate. Soil Use and Management, 2023, 39, 198-208.	4.9	2
2	Comparison of two image analysis software for root trait analysis of single and mixed species grasslands. The Plant Phenome Journal, 2022, 5, .	2.0	5
3	A novel 3D Xâ€ray computed tomography (CT) method for spatioâ€temporal evaluation of waterloggingâ€induced aerenchyma formation in barley. The Plant Phenome Journal, 2022, 5, .	2.0	6
4	The effect of tillage depth and traffic management on soil properties and root development during two growth stages of winter wheat (<i>Triticum aestivum</i> L.). Soil, 2022, 8, 391-408.	4.9	5
5	Development and verification of a novel isotopic N 2 O measurement technique for discrete static chamber samples using cavity ringâ€down spectroscopy. Rapid Communications in Mass Spectrometry, 2021, 35, e9049.	1.5	4
6	Source partitioning using N2O isotopomers and soil WFPS to establish dominant N2O production pathways from different pasture sward compositions. Science of the Total Environment, 2021, 781, 146515.	8.0	13
7	Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities. Trends in Plant Science, 2020, 25, 105-118.	8.8	141
8	Beyond Digging: Noninvasive Root and Rhizosphere Phenotyping. Trends in Plant Science, 2020, 25, 119-120.	8.8	49
9	3D printing of PEEK reactors for flow chemistry and continuous chemical processing. Reaction Chemistry and Engineering, 2020, 5, 728-735.	3.7	34
10	Sward composition and soil moisture conditions affect nitrous oxide emissions and soil nitrogen dynamics following urea-nitrogen application. Science of the Total Environment, 2020, 722, 137780.	8.0	16
11	Demystifying roots: A need for clarification and extended concepts in root phenotyping. Plant Science, 2019, 282, 11-13.	3.6	28
12	Quantification of root water uptake in soil using Xâ€ray computed tomography and imageâ€based modelling. Plant, Cell and Environment, 2018, 41, 121-133.	5.7	36
13	Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 2017, 3, 17057.	9.3	183
14	Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT). Plant Methods, 2017, 13, 9.	4.3	43
15	Reply to comment by X. X. Zhang et al. on "Threeâ€dimensional quantification of soil hydraulic properties using Xâ€ray computed tomography and imageâ€based modelingâ€. Water Resources Research, 2016, 52, 5691-5693.	4.2	1
16	Threeâ€dimensional quantification of soil hydraulic properties using Xâ€ray Computed Tomography and imageâ€based modeling. Water Resources Research, 2015, 51, 1006-1022.	4.2	94
17	Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling. Journal of Experimental Botany, 2015, 66, 2305-2314.	4.8	60
18	Using X-ray Computed Tomography to explore the role of abscisic acid in moderating the impact of soil compaction on root system architecture. Environmental and Experimental Botany, 2015, 110, 11-18.	4.2	50

#	Article	IF	CITATIONS
19	Recovering complete plant root system architectures from soil via X-ray \hat{l} /4-Computed Tomography. Plant Methods, 2013, 9, 8.	4.3	127
20	Quantifying the effect of soil moisture content on segmenting root system architecture in X-ray computed tomography images. Plant and Soil, 2013, 370, 35-45.	3.7	49
21	Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.). Environmental and Experimental Botany, 2013, 91, 38-47.	4.2	80
22	Applications of <scp>X</scp> â€ray computed tomography for examining biophysical interactions and structural development in soil systems: a review. European Journal of Soil Science, 2013, 64, 279-297.	3.9	164
23	Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography. PLoS ONE, 2013, 8, e67250.	2.5	70
24	Quantifying the impact of soil compaction on root system architecture in tomato (Solanum) Tj ETQq0 0 0 rgBT	Overlock 2.9	10 Tf 50 542 ⁻
25	RooTrak: Automated Recovery of Three-Dimensional Plant Root Architecture in Soil from X-Ray Microcomputed Tomography Images Using Visual Tracking Â. Plant Physiology, 2012, 158, 561-569.	4.8	215
26	Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum L.) using X-ray Micro Computed Tomography (CT). Plant and Soil, 2012, 353, 195-208.	3.7	71
27	Soil compaction: a review of past and present techniques for investigating effects on root growth. Journal of the Science of Food and Agriculture, 2011, 91, 1528-1537.	3.5	117
28	The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. Journal of Experimental Botany, 2010, 61, 311-313.	4.8	172
29	The veterinary drug ivermectin influences immune response in the yellow dung fly (Scathophaga) Tj ETQq1 1 0.7	784314 rg	BT LOverlock 1