Kazuko Yamaguchi-Shinozaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2514274/publications.pdf Version: 2024-02-01

		281	276
321	92,566	140	296
papers	citations	h-index	g-index
332	332	332	31666
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The overexpression of NCED results in waterlogging sensitivity in soybean. Plant Stress, 2022, 3, 100047.	5.5	7
2	CIN-like TCP13 is essential for plant growth regulation under dehydration stress. Plant Molecular Biology, 2022, 108, 257-275.	3.9	16
3	Affinity Purification Followed by Liquid –Tandem Mass to Identify Proteins Interacting with Components. Methods in Molecular Biology, 2022, 2462, 181-189.	0.9	0
4	<i>Arabidopsis</i> TBP-ASSOCIATED FACTOR 12 ortholog NOBIRO6 controls root elongation with unfolded protein response cofactor activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
5	Interâ€tissue and interâ€organ signaling in drought stress response and phenotyping of drought tolerance. Plant Journal, 2022, 109, 342-358.	5.7	50
6	Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science, 2022, 27, 922-935.	8.8	115
7	Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses. Journal of Plant Physiology, 2021, 257, 153338.	3.5	13
8	Metabolic engineering: Towards water deficiency adapted crop plants. Journal of Plant Physiology, 2021, 258-259, 153375.	3.5	6
9	Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	61
10	Cytosolic <scp>HSC70s</scp> repress heat stress tolerance and enhance seed germination under salt stress conditions. Plant, Cell and Environment, 2021, 44, 1788-1801.	5.7	16
11	Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems. Plants, 2021, 10, 756.	3.5	64
12	How utilizing the genes involved in drought tolerance could tackle the climate change-related food crisis?. Molecular Plant, 2021, 14, 1601-1603.	8.3	4
13	DNA demethylase ROS1 prevents inheritable DREB1A/CBF3 repression by transgene-induced promoter methylation in the Arabidopsis ice1-1 mutant. Plant Molecular Biology, 2020, 104, 575-582.	3.9	7
14	Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science, 2020, 11, 556972.	3.6	199
15	Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nature Communications, 2020, 11, 1373.	12.8	104
16	<i>DREB1A/CBF3</i> Is Repressed by Transgene-Induced DNA Methylation in the Arabidopsis <i>ice11</i> Mutant. Plant Cell, 2020, 32, 1035-1048.	6.6	42
17	Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnology Reports, 2020, 14, 151-162.	1.5	32
18	Expression of the CCCHâ€ŧandem zinc finger protein gene <i>OsTZF5</i> under a stressâ€inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions. Plant Biotechnology Journal, 2020, 18, 1711-1721.	8.3	40

#	Article	IF	CITATIONS
19	Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genetics and Molecular Biology, 2020, 43, e20190292.	1.3	21
20	ABA-responsive gene expression in response to drought stress: cellular regulation and long-distance signaling. Advances in Botanical Research, 2019, , 83-113.	1.1	18
21	NF-YB2 and NF-YB3 Have Functionally Diverged and Differentially Induce Drought and Heat Stress-Specific Genes. Plant Physiology, 2019, 180, 1677-1690.	4.8	62
22	Triazine Probes Target Ascorbate Peroxidases in Plants. Plant Physiology, 2019, 180, 1848-1859.	4.8	5
23	Revisiting the Basal Role of ABA – Roles Outside of Stress. Trends in Plant Science, 2019, 24, 625-635.	8.8	189
24	Field evaluation of At DREB 2A CA overexpressing sugarcane for drought tolerance. Journal of Agronomy and Crop Science, 2019, 205, 545-553.	3.5	8
25	Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A;2 FL and GmDREB2A;2 CA transcription factors during water deficit. Plant Physiology and Biochemistry, 2019, 140, 122-135.	5.8	8
26	Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11528-11536.	7.1	77
27	The Role of Abscisic Acid Signaling in Maintaining the Metabolic Balance Required for Arabidopsis Growth under Nonstress Conditions. Plant Cell, 2019, 31, 84-105.	6.6	84
28	Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. Journal of Biological Chemistry, 2019, 294, 902-917.	3.4	62
29	A geneâ€stacking approach to overcome the tradeâ€off between drought stress tolerance and growth in Arabidopsis. Plant Journal, 2019, 97, 240-256.	5.7	63
30	A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556, 235-238.	27.8	396
31	Endophytic bacterial microbiome associated with leaves of genetically modified (AtAREB1) and conventional (BR 16) soybean plants. World Journal of Microbiology and Biotechnology, 2018, 34, 56.	3.6	5
32	ER-Anchored Transcription Factors bZIP17 and bZIP28 Regulate Root Elongation. Plant Physiology, 2018, 176, 2221-2230.	4.8	74
33	<i>Arabidopsis thaliana</i> NGATHA1 transcription factor induces ABA biosynthesis by activating <i>NCED3</i> gene during dehydration stress. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11178-E11187.	7.1	106
34	Application of Biotechnology to Generate Drought-Tolerant Soybean Plants in Brazil: Development of Genetic Engineering Technology of Crops with Stress Tolerance Against Degradation of Global Environment. , 2018, , 111-130.		5
35	ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nature Plants, 2017, 3, 16204.	9.3	97
36	Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature. Plant Cell, 2017, 29, 760-774.	6.6	158

#	Article	IF	CITATIONS
37	Analysis of plant hormone profiles in response to moderate dehydration stress. Plant Journal, 2017, 90, 17-36.	5.7	103
38	Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant Journal, 2017, 90, 61-78.	5.7	173
39	Functional relationship of AtABCG21 and AtABCG22 in stomatal regulation. Scientific Reports, 2017, 7, 12501.	3.3	12
40	BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8528-E8536.	7.1	82
41	Design of an optimal promoter involved in the heatâ€induced transcriptional pathway in Arabidopsis, soybean, rice and maize. Plant Journal, 2017, 89, 671-680.	5.7	28
42	Transcriptional Regulatory Network of Plant Heat Stress Response. Trends in Plant Science, 2017, 22, 53-65.	8.8	782
43	Double overexpression of <scp>DREB</scp> and <scp>PIF</scp> transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnology Journal, 2017, 15, 458-471.	8.3	145
44	Rice Phytochrome-Interacting Factor-Like1 (OsPIL1) is involved in the promotion of chlorophyll biosynthesis through feed-forward regulatory loops. Journal of Experimental Botany, 2017, 68, 4103-4114.	4.8	36
45	Characterization of Soybean Genetically Modified for Drought Tolerance in Field Conditions. Frontiers in Plant Science, 2017, 8, 448.	3.6	59
46	A C-terminal motif contributes to the plasma membrane localization of Arabidopsis STP transporters. PLoS ONE, 2017, 12, e0186326.	2.5	14
47	Evaluation of the yield of abiotic-stress-tolerant <i>AtDREB1A</i> transgenic potato under saline conditions in advance of field trials. Breeding Science, 2016, 66, 703-710.	1.9	9
48	Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGoIS2 gene for drought tolerance. Molecular Breeding, 2016, 36, 1.	2.1	21
49	The <i><scp>A</scp>rabidopsis</i> transcriptional regulator <scp>DPB</scp> 3â€1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal, 2016, 14, 1756-1767.	8.3	55
50	The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression. Plant Cell, 2016, 28, 181-201.	6.6	152
51	Characterization of Molecular and Physiological Responses Under Water Deficit of Genetically Modified Soybean Plants Overexpressing the AtAREB1 Transcription Factor. Plant Molecular Biology Reporter, 2016, 34, 410-426.	1.8	22
52	é«~æ,©ç'°å¢ƒã,'ç"Ÿã抜ããŸã,ã®ææ‰©ã®è»¢å†™å^¶å¾¡æ©Ÿæ§‹. Kagaku To Seibutsu, 2015, 53, 696-702.	0.0	0
53	SNACâ€As, stressâ€responsive NAC transcription factors, mediate ABAâ€inducible leaf senescence. Plant Journal, 2015, 84, 1114-1123.	5.7	202
54	Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science, 2015, 6, 84.	3.6	334

#	Article	IF	CITATIONS
55	Two Distinct Families of Protein Kinases Are Required for Plant Growth under High External Mg ²⁺ Concentrations in Arabidopsis. Plant Physiology, 2015, 167, 1039-1057.	4.8	51
56	Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant and Cell Physiology, 2015, 56, 1043-1052.	3.1	100
57	A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis. Frontiers in Plant Science, 2015, 6, 48.	3.6	43
58	Exploring Genetic Resources to Increase Adaptation of Wheat to Climate Change. , 2015, , 355-368.		32
59	Soybean <scp>DREB</scp> 1/ <scp>CBF</scp> â€type transcription factors function in heat and drought as well as cold stressâ€responsive gene expression. Plant Journal, 2015, 81, 505-518.	5.7	255
60	Four <scp><i>A</i></scp> <i>rabidopsis</i> â€ <scp>AREB</scp> / <scp>ABF</scp> transcription factors function predominantly in gene expression downstream of <scp>SnRK2</scp> kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell and Environment, 2015, 38, 35-49.	5.7	491
61	In vitro evaluation of dehydration tolerance in AtDREB1A transgenic potatoes. Plant Biotechnology, 2014, 31, 77-81.	1.0	7
62	<i>Arabidopsis</i> DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell, 2014, 26, 4954-4973.	6.6	143
63	Approaches for enhancement of <scp>N</scp> ₂ fixation efficiency of chickpea (<i><scp>C</scp>icer arietinum</i> L.) under limiting nitrogen conditions. Plant Biotechnology Journal, 2014, 12, 387-397.	8.3	36
64	The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 2014, 5, 170.	3.6	684
65	Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Research, 2014, 23, 75-87.	2.4	78
66	Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Science, 2014, 221-222, 59-68.	3.6	91
67	Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Molecular Breeding, 2014, 33, 327-340.	2.1	72
68	Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 851-856.	7.1	555
69	Gene Expression Profiling Using DNA Microarrays. Methods in Molecular Biology, 2014, 1062, 381-391.	0.9	7
70	Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239, 47-60.	3.2	65
71	Drought Stress Signaling Network. , 2014, , 383-409.		23
72	ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 2014, 202, 35-49.	7.3	321

#	Article	IF	CITATIONS
73	Mechanisms of physiological adjustment of N ₂ fixation in <i>Cicer arietinum</i> L. (chickpea) during early stages of water deficit: single or multiâ€factor controls. Plant Journal, 2014, 79, 964-980.	5.7	46
74	ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 2014, 21, 133-139.	7.1	784
75	Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts. Plant Physiology, 2014, 164, 1759-1771.	4.8	228
76	Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis. Biochemical and Biophysical Research Communications, 2014, 450, 396-400.	2.1	19
77	Pivotal role of the AREB/ABFâ€SnRK2 pathway in ABREâ€mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 2013, 147, 15-27.	5.2	444
78	Overexpression of the ABA-Dependent AREB1 Transcription Factor from Arabidopsis thaliana Improves Soybean Tolerance to Water Deficit. Plant Molecular Biology Reporter, 2013, 31, 719-730.	1.8	64
79	Expression of Arabidopsis DREB1C improves survival, growth, and yield of upland New Rice for Africa (NERICA) under drought. Molecular Breeding, 2013, 31, 255-264.	2.1	35
80	<i>Arabidopsis</i> AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4840-4845.	7.1	191
81	Stress Signaling Networks: Drought Stress. , 2013, , 1-23.		3
82	Molecular Approaches to Improve Rice Abiotic Stress Tolerance. Methods in Molecular Biology, 2013, 956, 269-283.	0.9	24
83	Structure and function of abscisic acid receptors. Trends in Plant Science, 2013, 18, 259-266.	8.8	164
84	Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. Journal of Experimental Botany, 2013, 64, 445-458.	4.8	325
85	Osmotic Stress Responses and Plant Growth Controlled by Potassium Transporters in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 609-624.	6.6	350
86	Metabolic Profiling of Transgenic Potato Tubers Expressing Arabidopsis Dehydration Response Element-Binding Protein 1A (DREB1A). Journal of Agricultural and Food Chemistry, 2013, 61, 893-900.	5.2	34
87	ABA signaling in stress-response and seed development. Plant Cell Reports, 2013, 32, 959-970.	5.6	631
88	Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription. DNA Research, 2013, 20, 315-324.	3.4	93
89	Genome-Wide Analysis of ZmDREB Genes and Their Association with Natural Variation in Drought Tolerance at Seedling Stage of Zea mays L. PLoS Genetics, 2013, 9, e1003790.	3.5	280
90	The Auxin Response Factor Transcription Factor Family in Soybean: Genome-Wide Identification and Expression Analyses During Development and Water Stress. DNA Research, 2013, 20, 511-524.	3.4	151

#	Article	IF	CITATIONS
91	OsTZF1, a CCCH-Tandem Zinc Finger Protein, Confers Delayed Senescence and Stress Tolerance in Rice by Regulating Stress-Related Genes Â. Plant Physiology, 2013, 161, 1202-1216.	4.8	247
92	TreeTFDB: An Integrative Database of the Transcription Factors from Six Economically Important Tree Crops for Functional Predictions and Comparative and Functional Genomics. DNA Research, 2013, 20, 151-162.	3.4	25
93	HsfA1d, a Protein Identified via FOX Hunting Using Thellungiella salsuginea cDNAs Improves Heat Tolerance by Regulating Heat-Stress-Responsive Gene Expression. Molecular Plant, 2013, 6, 411-422.	8.3	52
94	Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration. Genetics and Molecular Biology, 2013, 36, 556-565.	1.3	34
95	Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 2013, 8, e80457.	2.5	52
96	Natural variation in a polyamine transporter determines paraquat tolerance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6343-6347.	7.1	115
97	GmDREB2A;2, a Canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-Type Transcription Factor in Soybean, Is Posttranslationally Regulated and Mediates Dehydration-Responsive Element-Dependent Gene Expression Â. Plant Physiology, 2012, 161, 346-361.	4.8	149
98	Phenotyping transgenic wheat for drought resistance. Journal of Experimental Botany, 2012, 63, 1799-1808.	4.8	102
99	Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15947-15952.	7.1	119
100	Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Research, 2012, 19, 37-49.	3.4	241
101	Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 2012, 17, 172-179.	8.8	466
102	<i>Arabidopsis</i> GROWTH-REGULATING FACTOR7 Functions as a Transcriptional Repressor of Abscisic Acid– and Osmotic Stress–Responsive Genes, Including <i>DREB2A</i> . Plant Cell, 2012, 24, 3393-3405.	6.6	184
103	AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 86-96.	1.9	1,087
104	NAC transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 97-103.	1.9	779
105	Benefits of brassinosteroid crosstalk. Trends in Plant Science, 2012, 17, 594-605.	8.8	271
106	Differential Gene Expression in Soybean Leaf Tissues at Late Developmental Stages under Drought Stress Revealed by Genome-Wide Transcriptome Analysis. PLoS ONE, 2012, 7, e49522.	2.5	162
107	Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 491-494.	0.7	6
108	Abiotic stressâ€inducible receptorâ€like kinases negatively control ABA signaling in Arabidopsis. Plant Journal, 2012, 70, 599-613.	5.7	168

#	Article	IF	CITATIONS
109	Overexpression of <i>Arabidopsis</i> and Rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnology Journal, 2012, 10, 579-586.	8.3	120
110	Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice, 2012, 5, 6.	4.0	183
111	Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency. PLoS ONE, 2012, 7, e32124.	2.5	146
112	Identification and Expression Analysis of Cytokinin Metabolic Genes in Soybean under Normal and Drought Conditions in Relation to Cytokinin Levels. PLoS ONE, 2012, 7, e42411.	2.5	132
113	Expression of the DREB1A gene in lentil (Lens culinaris Medik. subsp. culinaris) transformed with the Agrobacterium system. Crop and Pasture Science, 2011, 62, 488.	1.5	33
114	Monosaccharide Absorption Activity of Arabidopsis Roots Depends on Expression Profiles of Transporter Genes under High Salinity Conditions. Journal of Biological Chemistry, 2011, 286, 43577-43586.	3.4	88
115	Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance. Plant and Cell Physiology, 2011, 52, 1569-1582.	3.1	451
116	Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genetics and Molecular Research, 2011, 10, 3641-3656.	0.2	50
117	Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biology, 2011, 11, 39.	3.6	41
118	Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis Â. Plant Cell, 2011, 23, 2169-2183.	6.6	647
119	Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Molecular Biology, 2011, 77, 129-144.	3.9	103
120	Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 2011, 286, 321-332.	2.1	377
121	ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 2011, 124, 509-525.	2.4	860
122	Genome-Wide Survey and Expression Analysis of the Plant-Specific NAC Transcription Factor Family in Soybean During Development and Dehydration Stress. DNA Research, 2011, 18, 263-276.	3.4	362
123	Arabidopsis Cys2/His2 Zinc-Finger Proteins AZF1 and AZF2 Negatively Regulate Abscisic Acid-Repressive and Auxin-Inducible Genes under Abiotic Stress Conditions Â. Plant Physiology, 2011, 157, 742-756.	4.8	165
124	In Silico Analysis of Transcription Factor Repertoires and Prediction of Stress-Responsive Transcription Factors from Six Major Gramineae Plants. DNA Research, 2011, 18, 321-332.	3.4	48
125	<i>SPINDLY</i> , a Negative Regulator of Gibberellic Acid Signaling, Is Involved in the Plant Abiotic Stress Response Â. Plant Physiology, 2011, 157, 1900-1913.	4.8	93
126	Genome-Wide Expression Profiling of Soybean Two-Component System Genes in Soybean Root and Shoot Tissues under Dehydration Stress. DNA Research, 2011, 18, 17-29.	3.4	113

#	Article	IF	CITATIONS
127	An ABRE Promoter Sequence is Involved in Osmotic Stress-Responsive Expression of the DREB2A Gene, Which Encodes a Transcription Factor Regulating Drought-Inducible Genes in Arabidopsis. Plant and Cell Physiology, 2011, 52, 2136-2146.	3.1	263
128	DREB1A regulon expression in <i>rd29A:DREB1A</i> transgenic chrysanthemum under low temperature or dehydration stress. Journal of Horticultural Science and Biotechnology, 2010, 85, 503-510.	1.9	10
129	Immunoproteomic and Two-Dimensional Difference Gel Electrophoresis Analysis of Arabidopsis Dehydration Response Element-Binding Protein 1A (DREB1A)-Transgenic Potato. Biological and Pharmaceutical Bulletin, 2010, 33, 1418-1425.	1.4	12
130	Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 2010, 283, 185-196.	2.1	362
131	The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 2010, 284, 173-183.	2.1	398
132	AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal, 2010, 61, 672-685.	5.7	871
133	Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signaling and Behavior, 2010, 5, 148-150.	2.4	107
134	Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion Transporter for Monosaccharides. Journal of Biological Chemistry, 2010, 285, 1138-1146.	3.4	151
135	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 4327-4327.	2.5	12
136	LegumeTFDB: an integrative database of <i>Glycine max</i> , <i>Lotus japonicus</i> and <i>Medicago truncatula</i> transcription factors. Bioinformatics, 2010, 26, 290-291.	4.1	70
137	Two Closely Related Subclass II SnRK2 Protein Kinases Cooperatively Regulate Drought-Inducible Gene Expression. Plant and Cell Physiology, 2010, 51, 842-847.	3.1	123
138	Overproduction of the Membrane-bound Receptor-like Protein Kinase 1, RPK1, Enhances Abiotic Stress Tolerance in Arabidopsis. Journal of Biological Chemistry, 2010, 285, 9190-9201.	3.4	133
139	Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops, 2010, 1, 32-39.	1.9	212
140	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 3911-3920.	2.5	291
141	Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport. Plant and Cell Physiology, 2010, 51, 1821-1839.	3.1	800
142	Genome-Wide Analysis of Two-Component Systems and Prediction of Stress-Responsive Two-Component System Members in Soybean. DNA Research, 2010, 17, 303-324.	3.4	87
143	The Phytochrome-Interacting Factor PIF7 Negatively Regulates <i>DREB1</i> Expression under Circadian Control in Arabidopsis. Plant Physiology, 2009, 151, 2046-2057.	4.8	181
144	In silico Analysis of Transcription Factor Repertoire and Prediction of Stress Responsive Transcription Factors in Soybean. DNA Research, 2009, 16, 353-369.	3.4	87

#	Article	IF	CITATIONS
145	DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 2009, 122, 633-643.	2.4	154
146	Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Molecular Biology, 2009, 70, 231-240.	3.9	80
147	Characterization of the ABAâ€regulated global responses to dehydration in Arabidopsis by metabolomics. Plant Journal, 2009, 57, 1065-1078.	5.7	519
148	Structural basis of abscisic acid signalling. Nature, 2009, 462, 609-614.	27.8	490
149	Promoters and Transcription Factors in Abiotic Stress-Responsive Gene Expression. , 2009, , 199-216.		5
150	Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 2009, 50, 1345-1363.	3.1	636
151	DREB Regulons in Abiotic-Stress-Responsive Gene Expression in Plants. , 2009, , 15-28.		18
152	Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2123-2132.	3.1	599
153	Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiology, 2009, 149, 88-95.	4.8	1,052
154	Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17588-17593.	7.1	980
155	Metabolic Pathways Involved in Cold Acclimation Identified by Integrated Analysis of Metabolites and Transcripts Regulated by DREB1A and DREB2A Â Â. Plant Physiology, 2009, 150, 1972-1980.	4.8	315
156	Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications, 2008, 368, 515-521.	2.1	209
157	<i>Arabidopsis</i> DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression. Plant Cell, 2008, 20, 1693-1707.	6.6	477
158	Sequencing and Analysis of Approximately 40 000 Soybean cDNA Clones from a Full-Length-Enriched cDNA Library. DNA Research, 2008, 15, 333-346.	3.4	98
159	The Mitogen-Activated Protein Kinase Cascade MKK3–MPK6 Is an Important Part of the Jasmonate Signal Transduction Pathway in Arabidopsis. Plant Cell, 2007, 19, 805-818.	6.6	347
160	Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochemical and Biophysical Research Communications, 2007, 364, 250-257.	2.1	112
161	Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20623-20628.	7.1	592
162	Plant Gene Networks in Osmotic Stress Response: From Genes to Regulatory Networks. Methods in Enzymology, 2007, 428, 109-128.	1.0	114

#	Article	IF	CITATIONS
163	Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal, 2007, 50, 54-69.	5.7	447
164	Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant Journal, 2007, 50, 751-766.	5.7	171
165	Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant Journal, 2007, 51, 617-630.	5.7	996
166	Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Reports, 2007, 26, 1275-1282.	5.6	87
167	Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 2007, 26, 2071-2082.	5.6	240
168	Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2006, 58, 221-227.	4.8	2,114
169	The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnology, 2006, 23, 169-177.	1.0	80
170	Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotechnology Journal, 2006, 4, 325-332.	8.3	139
171	Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant Journal, 2006, 49, 46-63.	5.7	256
172	Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiologia Plantarum, 2006, 126, 62-71.	5.2	306
173	Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 2006, 17, 113-122.	6.6	683
174	TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 2006, 57, 781-803.	18.7	2,537
175	Transcriptional Regulation of ABI3- and ABA-responsive Genes Including RD29B and RD29A in Seeds, Germinating Embryos, and Seedlings of Arabidopsis. Plant Molecular Biology, 2006, 60, 51-68.	3.9	293
176	Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Functional and Integrative Genomics, 2006, 6, 212-234.	3.5	137
177	Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Science in China Series C: Life Sciences, 2006, 49, 436-445.	1.3	65
178	Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 2006, 9, 436-442.	7.1	1,595
179	Expression of the <i>Arabidopsis DREB1A</i> gene in transgenic chrysanthemum enhances tolerance to low temperature. Journal of Horticultural Science and Biotechnology, 2006, 81, 1002-1008.	1.9	27
180	Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell, 2006, 18, 1292-1309.	6.6	968

#	Article	IF	CITATIONS
181	Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1988-1993.	7.1	760
182	Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18822-18827.	7.1	694
183	Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant and Cell Physiology, 2006, 47, 141-153.	3.1	853
184	Tolerance to Salt Stress of the Transgenic Tetrasomic Tetraploid Potato, Solanum tuberosum cv. Desiree Appears to be Induced by the DREB1A Gene and rd29A Promoter of Arabidopsis thaliana. Breeding Science, 2005, 55, 311-319.	1.9	40
185	Molecular Studies on Stress-Responsive Gene Expression in Arabidopsis and Improvement of Stress Tolerance in Crop Plants by Regulon Biotechnology. Japan Agricultural Research Quarterly, 2005, 39, 221-229.	0.4	30
186	Leucine-Rich Repeat Receptor-Like Kinase1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis. Plant Cell, 2005, 17, 1105-1119.	6.6	313
187	Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 2005, 56, 1975-1981.	4.8	369
188	AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis Â. Plant Cell, 2005, 17, 3470-3488.	6.6	826
189	Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 2005, 10, 88-94.	8.8	1,200
190	A Novel Inhibitor of 9-cis-Epoxycarotenoid Dioxygenase in Abscisic Acid Biosynthesis in Higher Plants. Plant Physiology, 2004, 135, 1574-1582.	4.8	99
191	A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer. Plant and Cell Physiology, 2004, 45, 346-350.	3.1	616
192	SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17306-17311.	7.1	312
193	Identification of cold-inducible downstream genes of theArabidopsisDREB1A/CBF3 transcriptional factor using two microarray systems. Plant Journal, 2004, 38, 982-993.	5.7	546
194	A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant Journal, 2004, 39, 863-876.	5.7	877
195	Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Molecular Biology, 2004, 56, 29-55.	3.9	130
196	Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter[W]. Plant Cell, 2004, 16, 2481-2498.	6.6	1,329
197	Arabidopsis Cys2/His2-Type Zinc-Finger Proteins Function as Transcription Repressors under Drought, Cold, and High-Salinity Stress Conditions. Plant Physiology, 2004, 136, 2734-2746.	4.8	526
198	Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004, 47, 493-500.	2.0	369

4.8

159

#	Article	IF	CITATIONS
199	Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications, 2004, 313, 369-375.	2.1	194
200	Cloning and Functional Analysis of a Novel DREB1/CBF Transcription Factor Involved in Cold-Responsive Gene Expression in Zea mays L Plant and Cell Physiology, 2004, 45, 1042-1052.	3.1	336
201	A Novel Subgroup of bZIP Proteins Functions as Transcriptional Activators in Hypoosmolarity-Responsive Expression of the ProDH Gene in Arabidopsis. Plant and Cell Physiology, 2004, 45, 309-317.	3.1	166
202	ç'°å¢fã,¹ãf^ãf¬ã,¹è€œ€§ç²å¾—ã«é−¢ä,ŽãᠯMã,‹è»¢å†™å›åÐREBã«ã,ˆã£ã┥å^¶å¾¡ã•ã,Œã,‹ä»£è¬ãfãffãf^ãf¯ãf	¹⁄₄ã ӯ. Ӎірр	on N ogeikaga
203	Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003, 6, 410-417.	7.1	1,616
204	Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 2003, 14, 194-199.	6.6	417
205	Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant, Cell and Environment, 2003, 26, 1917-1926.	5.7	191
206	Two different novel <i>cis</i> â€acting elements of <i>erd1</i> , a <i>clpA</i> homologous <i>Arabidopsis</i> gene function in induction by dehydration stress and darkâ€induced senescence. Plant Journal, 2003, 33, 259-270.	5.7	402
207	OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 2003, 33, 751-763.	5.7	1,482
208	Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant Journal, 2003, 34, 137-148.	5.7	664
209	Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds -tagged Arabidopsis pale-green mutant. Plant Journal, 2003, 34, 719-731.	5.7	93
210	Monitoring expression profiles ofArabidopsisgene expression during rehydration process after dehydration usingca. 7000 full-length cDNA microarray. Plant Journal, 2003, 34, 868-887.	5.7	263
211	Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses Â. Plant Physiology, 2003, 133, 1755-1767.	4.8	906
212	Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling. Plant Cell, 2003, 15, 63-78.	6.6	1,905
213	RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. Journal of Experimental Botany, 2003, 55, 213-223.	4.8	94
214	Molecular Mechanisms of Plant Responses and Tolerance of Drought and Cold Stress. , 2003, , 30-37.		1
215	DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. Biochemical and Biophysical Research Communications, 2002, 290, 998-1009.	2.1	1,572

ACTCAT, a Novel cis-Acting Element for Proline- and Hypoosmolarity-Responsive Expression of the ProDH Gene Encoding Proline Dehydrogenase in Arabidopsis. Plant Physiology, 2002, 130, 709-719.

#	Article	IF	CITATIONS
217	Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochemical and Biophysical Research Communications, 2002, 293, 806-815.	2.1	81
218	Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2002, 2, 282-291.	3.5	394
219	Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant Journal, 2002, 29, 417-426.	5.7	1,002
220	Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 2002, 31, 279-292.	5.7	1,697
221	Hyperosmotic Stress Induces a Rapid and Transient Increase in Inositol 1,4,5-Trisphosphate Independent of Abscisic Acid in Arabidopsis Cell Culture. Plant and Cell Physiology, 2001, 42, 214-222.	3.1	167
222	Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant Journal, 2001, 27, 325-333.	5.7	1,138
223	Arabidopsis encyclopedia using full-length cDNAs and its application. Plant Physiology and Biochemistry, 2001, 39, 211-220.	5.8	34
224	Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell, 2001, 13, 61.	6.6	19
225	Characterization of Four Extensin Genes in Arabidopsis thaliana by Differential Gene Expression under Stress and Non-Stress Conditions. DNA Research, 2001, 8, 115-122.	3.4	28
226	Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell, 2001, 13, 61-72.	6.6	986
227	Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 2000, 3, 217-223.	7.1	1,378
228	Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Molecular Biology, 2000, 42, 657-665.	3.9	341
229	Molecular Cloning and Characterization of a cDNA Encoding Proline Transporter in Rice. Plant and Cell Physiology, 2000, 41, 750-756.	3.1	49
230	A Stress-Inducible Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Abscisic Acid Biosynthesis under Water Stress in Drought-Tolerant Cowpea. Plant Physiology, 2000, 123, 553-562.	4.8	314
231	A novel Arabidopsis thaliana dynaminâ€like protein containing the pleckstrin homology domain1. Journal of Experimental Botany, 2000, 51, 317-318.	4.8	27
232	Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11632-11637.	7.1	1,204
233	An Arabidopsis Gene Encoding a Ca2+-Binding Protein is Induced by Abscisic Acid during Dehydration. Plant and Cell Physiology, 2000, 41, 898-903.	3.1	122
234	Two-component systems in plant signal transduction. Trends in Plant Science, 2000, 5, 67-74.	8.8	184

#	Article	IF	CITATIONS
235	Possible His to Asp phosphorelay signaling in anArabidopsistwo-component system. FEBS Letters, 2000, 478, 227-232.	2.8	147
236	A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor. Plant Cell, 1999, 11, 1743.	6.6	4
237	Mapping of 25 Drought-Inducible Genes, RD and ERD, in Arabidopsis thaliana. Plant and Cell Physiology, 1999, 40, 119-123.	3.1	46
238	A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor. Plant Cell, 1999, 11, 1743-1754.	6.6	501
239	Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journal, 1999, 18, 185-193.	5.7	323
240	Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 1999, 17, 287-291.	17.5	1,838
241	Antisense suppression of proline degradation improves tolerance to freezing and salinity in <i>Arabidopsis thaliana </i> . FEBS Letters, 1999, 461, 205-210.	2.8	405
242	Stress-Responsive and Developmental Regulation of Δ1-Pyrroline-5-carboxylate Synthetase 1 (P5CS1) Gene Expression in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 1999, 261, 766-772.	2.1	105
243	Gene note. Isolation of an Arabidopsis thaliana cDNA encoding a pleckstrin homology domain protein, a putative homologue of human pleckstrin. Journal of Experimental Botany, 1999, 50, 729-730.	4.8	5
244	Early salt-stress effects on expression of genes for aquaporin homologues in the halophyte sea aster (Aster tripolium L.). Journal of Plant Research, 1998, 111, 411-419.	2.4	23
245	Molecular responses to water stress inArabidopsis thaliana. Journal of Plant Research, 1998, 111, 345-351.	2.4	41
246	A gene encoding phosphatidylinositolâ€4â€phosphate 5â€kinase is induced by water stress and abscisic acid inArabidopsis thaliana. Plant Journal, 1998, 15, 563-568.	5.7	173
247	Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis. Plant Cell, 1998, 10, 1391-1406.	6.6	2,660
248	ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter1The nucleotide sequence reported in this paper has been submitted to DDBJ with the accession number of D89051.1. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1370, 187-191.	2.6	118
249	Stress-responsive expression of genes for two-component response regulator-like proteins inArabidopsis thaliana. FEBS Letters, 1998, 427, 175-178.	2.8	130
250	Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Letters, 1998, 437, 11-14.	2.8	108
251	AnArabidopsisGene Family Encoding DRE/CRT Binding Proteins Involved in Low-Temperature-Responsive Gene Expression. Biochemical and Biophysical Research Communications, 1998, 250, 161-170.	2.1	309
252	A Gene Encoding Proline Dehydrogenase Is Not Only Induced by Proline and Hypoosmolarity, but Is Also Developmentally Regulated in the Reproductive Organs of Arabidopsis. Plant Physiology, 1998, 118, 1233-1241.	4.8	128

#	Article	IF	CITATIONS
253	Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis. Plant Cell, 1998, 10, 1391.	6.6	213
254	Molecular Responses to Drought Stress. , 1998, , 149-163.		34
255	Gene Expression and Signal Transduction in Water-Stress Response. Plant Physiology, 1997, 115, 327-334.	4.8	980
256	Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress. Plant and Cell Physiology, 1997, 38, 1095-1102.	3.1	560
257	Role of Arabidopsis MYC and MYB Homologs in Drought- and Abscisic Acid-Regulated Gene Expression. Plant Cell, 1997, 9, 1859.	6.6	23
258	Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression Plant Cell, 1997, 9, 1859-1868.	6.6	921
259	Molecular characterization of a cDNA encoding a novel small GTP-binding protein from Arabidopsis thaliana. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1354, 99-104.	2.4	7
260	Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Molecular Biology, 1997, 33, 857-865.	3.9	222
261	A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant Journal, 1997, 12, 851-861.	5.7	190
262	A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis Plant Cell, 1996, 8, 1323-1335.	6.6	331
263	Novel Drought-Inducible Genes in the Highly Drought-Tolerant Cowpea: Cloning of cDNAs and Analysis of the Expression of the Corresponding Genes. Plant and Cell Physiology, 1996, 37, 1073-1082.	3.1	84
264	A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana Proceedings of the National Academy of Sciences of the United States of America. 1996, 93, 765-769.	7.1	483
265	Characterization of two cDNAs for novel drought-inducible genes in the highly drought-tolerant cowpea. Journal of Plant Research, 1996, 109, 415-424.	2.4	38
266	Molecular responses to drought and cold stress. Current Opinion in Biotechnology, 1996, 7, 161-167.	6.6	422
267	A transcriptional activation domain of ATMYB2, a drought-inducible Arabidopsis Myb-related protein. Plant Journal, 1996, 10, 1145-1148.	5.7	77
268	Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Molecular Biology, 1996, 32, 571-576.	3.9	45
269	A Nuclear Gene Encoding Mitochondrial Proline Dehydrogenase, an Enzyme Involved in Proline Metabolism, Is Upregulated by Proline but Downregulated by Dehydration in Arabidopsis. Plant Cell, 1996, 8, 1323.	6.6	66

270 Water Stress-Induced Genes inArabidopsis thaliana. , 1996, , 153-161.

#	Article	IF	CITATIONS
271	Correlation between the induction of a gene for Delta1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant Journal, 1995, 7, 751-760.	5.7	453
272	Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Molecular Genetics and Genomics, 1995, 247, 391-398.	2.4	112
273	Regulation of genes that are induced by drought stress inArabidopsis thaliana. Journal of Plant Research, 1995, 108, 127-136.	2.4	32
274	Characterization of a cDNA Clone Encoding 23 kDa Polypeptide of the Oxygen-Evolving Complex of Photosystem II in Rice. Plant and Cell Physiology, 1995, , .	3.1	5
275	Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress inArabidopsis thaliana. FEBS Letters, 1995, 358, 199-204.	2.8	77
276	Gene Expression and Signal Transduction in Arabidopsis Plants under Water-Stress Conditions. , 1995, , 3475-3480.		0
277	ERD15, a cDNA for a Dehydration-Induced Gene from Arabidopsis thaliana. Plant Physiology, 1994, 106, 1707-1707.	4.8	59
278	An Arabidopsis thaliana cDNA Encoding Ca2+-Dependent Protein Kinase. Plant Physiology, 1994, 105, 1461-1462.	4.8	26
279	Cloning and Sequencing of a Novel Serine/Threonine Protein Kinase in Arabidopsis thaliana. Plant Physiology, 1994, 106, 1229-1230.	4.8	11
280	A Novel cis-Acting Element in an Arabidopsis Gene Is Involved in Responsiveness to Drought, Low-Temperature, or High-Salt Stress. Plant Cell, 1994, 6, 251.	6.6	22
281	Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Molecular Genetics and Genomics, 1994, 244, 331-340.	2.4	252
282	Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) inArabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Molecular Biology, 1994, 25, 791-798.	3.9	235
283	Sequencing and characterization of the kinesin-related geneskatB andkatC ofArabidopsis thaliana. Plant Molecular Biology, 1994, 25, 865-876.	3.9	69
284	Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant Journal, 1994, 5, 111-122.	5.7	228
285	Characterization of an Arabidopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress. Plant Journal, 1994, 6, 259-269.	5.7	74
286	A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress Plant Cell, 1994, 6, 251-264.	6.6	1,824
287	Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular Genetics and Genomics, 1993, 236-236, 331-340.	2.4	466
288	The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Molecular Genetics and Genomics, 1993, 238-238, 17-25.	2.4	297

#	Article	IF	CITATIONS
289	Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Molecular Genetics and Genomics, 1993, 238, 362-368.	2.4	82
290	Cloning and characterization of two cDNAs encoding casein kinase II catalytic subunits in Arabidopsis thaliana. Plant Molecular Biology, 1993, 21, 279-289.	3.9	61
291	cDNA cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Molecular Biology, 1993, 21, 1053-1068.	3.9	62
292	Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S -transferases in Arabidopsis thaliana L. FEBS Letters, 1993, 335, 189-192.	2.8	108
293	ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Letters, 1993, 336, 440-444.	2.8	130
294	Characterization of cDNA for a Dehydration-Inducible Gene That Encodes a CLP A, B-like Protein in Arabidopsis thaliana L Biochemical and Biophysical Research Communications, 1993, 196, 1214-1220.	2.1	99
295	Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene, 1993, 129, 175-182.	2.2	268
296	An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence Plant Cell, 1993, 5, 1529-1539.	6.6	514
297	An Arabidopsis myb Homolog Is Induced by Dehydration Stress and Its Gene Product Binds to the Conserved MYB Recognition Sequence. Plant Cell, 1993, 5, 1529.	6.6	100
298	Arabidopsis DNA Encoding Two Desiccation-Responsive rd29 Genes. Plant Physiology, 1993, 101, 1119-1120.	4.8	165
299	A novelArabidopsisDNA binding protein contains the conserved motif of HMG-box proteins. Nucleic Acids Research, 1992, 20, 6737-6737.	14.5	21
300	Molecular Cloning and Characterization of 9 cDNAs for Genes That Are Responsive to Desiccation in Arabidopsis thaliana: SequenceAnalysis of One cDNA Clone That Encodes a Putative Transmembrane Channel Protein. Plant and Cell Physiology, 1992, 33, 217-224.	3.1	375
301	Characterization of a gene that encodes a homologue of protein kinase in Arabidopsis thaliana. Gene, 1992, 121, 325-330.	2.2	15
302	Nucleotide sequence of a cDNA encoding a protein kinase homologue inArbidopsis thaliana. Plant Molecular Biology, 1992, 18, 809-812.	3.9	20
303	Nucleotide sequence of a gene from Arabidopsis thaliana encoding a myb homologue. Plant Molecular Biology, 1992, 19, 493-499.	3.9	39
304	Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Molecular Biology, 1992, 19, 239-249.	3.9	82
305	Four tightly linked rab genes are differentially expressed in rice. Plant Molecular Biology, 1990, 14, 29-39.	3.9	143
306	Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Molecular Biology, 1990, 15, 905-912.	3.9	55

#	Article	IF	CITATIONS
307	Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1406-1410.	7.1	364
308	Processing of precursor tRNAs in a chloroplast lysate. FEBS Letters, 1987, 215, 132-136.	2.8	35
309	Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: Determination of the splice sites in ndhA and ndhB pre-mRNAs. Molecular Genetics and Genomics, 1987, 210, 385-393.	2.4	158
310	The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO Journal, 1986, 5, 2043-2049.	7.8	2,180
311	Activation of Influenza Virus-Associated RNA Polymerase by Cap-1 Structure (m7GpppNm)12. Journal of Biochemistry, 1985, 97, 655-661.	1.7	27
312	Chemical synthesis of the 5′-terminal part bearing cap structure of messenger RNA of cytoplasmic polyhedrosis virus (CPV): m7G5′ pppAmpG and m7G5pppAmpGpU. Nucleic Acids Research, 1984, 12, 2939-2954.	14.5	15
313	Relationship between structure of the 5' noncoding region of viral mRNA and efficiency in the initiation step of protein synthesis in a eukaryotic system Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 1012-1016.	7.1	38
314	Difference in degradation modes of capped and decapped mRNAs in various eukaryotic cells. FEBS Letters, 1982, 139, 197-200.	2.8	3
315	On the base-stacking in the 5′-terminal cap structure of mRNA: a fluorescence study. Nucleic Acids Research, 1980, 8, 1107-1119.	14.5	33
316	Effects of db-cAMP and theophylline on cell surface adenosine triphosphatase activity in cultured hepatoma cells. Experimental Cell Research, 1978, 116, 261-268.	2.6	7
317	Surface ATPase activity at cell-cell contacts in hepatic parenchymal cells and in cAMP-treated hepatoma cells in monolayer culture. Histochemistry, 1977, 54, 191-199.	1.9	11
318	Transcriptome analysis in abiotic stress conditions in higher plants. Topics in Current Genetics, 0, , 271-308.	0.7	16
319	Genomic Analysis of Stress Respnse. , 0, , 248-265.		2
320	Transcription Factors Involved in the Crosstalk between Abiotic and Biotic Stress-Signaling Networks. , 0, , 43-58.		10
321	Overexpression of full-length and partial DREB2A enhances soybean drought tolerance. Agronomy Science and Biotechnology, 0, 8, 1-21.	0.3	5