Wei-Qiang Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/251399/publications.pdf

Version: 2024-02-01

		19657	27406
164	12,131	61	106
papers	citations	h-index	g-index
169	169	169	13406
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Research, 2022, 15, 2746-2755.	10.4	29
2	Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chemical Engineering Journal, 2022, 429, 132396.	12.7	60
3	A Review of Heteroatom Doped Materials for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, 2107166.	14.9	113
4	An effective artificial layer boosting high-performance all-solid-state lithium batteries with high coulombic efficiency. Journal of Materiomics, 2022, 8, 257-265.	5.7	2
5	Modifying Ti3C2 MXene with NH4+ as an excellent anode material for improving the performance of microbial fuel cells. Chemosphere, 2022, 288, 132502.	8.2	19
6	Facile preparation of low-cost multifunctional porous binder for silicon anodes in lithium-ion batteries. Electrochimica Acta, 2022, 413, 140187.	5.2	4
7	MXene-based sulfur composite cathodes. , 2022, , 361-388.		O
8	Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Research, 2021, 14, 1218-1227.	10.4	45
9	Electrochemical Performance Enhancement of Micro-Sized Porous Si by Integrating with Nano-Sn and Carbonaceous Materials. Materials, 2021, 14, 920.	2.9	3
10	In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chemical Engineering Journal, 2021, 411, 128534.	12.7	34
11	Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior Sodium-ion batteries. Chemical Engineering Journal, 2021, 417, 129161.	12.7	78
12	Ultrafine Sb Pillared Few-Layered Ti ₃ C ₂ T _x MXenes for Advanced Sodium Storage. ACS Applied Energy Materials, 2021, 4, 9806-9815.	5.1	18
13	Direct Observation of Optical Band Gap Components in Ga1–xZnxN1–xOx Solid-Solution Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 19438-19444.	3.1	1
14	Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition. Energy Storage Materials, 2021, 43, 229-237.	18.0	75
15	Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials. Electrochimica Acta, 2020, 337, 135687.	5. 2	39
16	Rational Design of Porous N-Ti3C2 MXene@CNT Microspheres for High Cycling Stability in Li–S Battery. Nano-Micro Letters, 2020, 12, 4.	27.0	91
17	Oneâ€Pot Synthesis of a Copolymer Micelle Crosslinked Binder with Multiple Lithiumâ€lon Diffusion Pathways for Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 819-826.	6.8	14
18	Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface?. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52845-52856.	8.0	15

#	Article	IF	CITATIONS
19	Rational Design of an Electron/Ion Dual-Conductive Cathode Framework for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41323-41332.	8.0	29
20	Rational Design of Pillared SnS/Ti ₃ C ₂ T _{<i>x</i>} MXene for Superior Lithium-Ion Storage. ACS Nano, 2020, 14, 17665-17674.	14.6	93
21	Dual Immobilization of SnO _{<i>x</i>} Nanoparticles by N-Doped Carbon and TiO ₂ for High-Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55820-55829.	8.0	18
22	Biomass-Derived 3D Interconnected Porous Carbon-Encapsulated Nano-FeS ₂ for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 5589-5596.	5.1	32
23	In-situ growth of hierarchical N-doped CNTs/Ni Foam scaffold for dendrite-free lithium metal anode. Energy Storage Materials, 2020, 29, 332-340.	18.0	80
24	Thiolâ€Assisted Synthesis of Carbonâ€Supported Metal Nanoparticles for Efficient Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2020, 15, 2153-2159.	3.3	8
25	Partial Atomic Tin Nanocomplex Pillared Few-Layered Ti3C2Tx MXenes for Superior Lithium-Ion Storage. Nano-Micro Letters, 2020, 12, 78.	27.0	68
26	Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Physical Chemistry Chemical Physics, 2020, 22, 16482-16526.	2.8	47
27	Flowerlike Ti-Doped MoO ₃ Conductive Anode Fabricated by a Novel NiTi Dealloying Method: Greatly Enhanced Reversibility of the Conversion and Intercalation Reaction. ACS Applied Materials & December 12, 8240-8248.	8.0	13
28	Fast and Universal Solution-Phase Flocculation Strategy for Scalable Synthesis of Various Few-Layered MXene Powders. Journal of Physical Chemistry Letters, 2020, 11, 1247-1254.	4.6	76
29	Multifunctional cross-linked polymer-Laponite nanocomposite binder for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124316.	12.7	41
30	Embedding submicron SiO2 into porous carbon as advanced lithiumâ€'ion batteries anode with ultralong cycle life and excellent rate capability. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 227-233.	5.3	12
31	Facile Preparation of Highâ€Content Nâ€Doped CNT Microspheres for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2019, 29, 1904819.	14.9	81
32	Vapor Deposition Red Phosphorus to Prepare Nitrogen-Doped Ti ₃ C ₂ T _{<i>x</i>)ournal of Physical Chemistry Letters, 2019, 10, 6446-6454.}	4.6	38
33	Novel Synthesis of Red Phosphorus Nanodot/Ti ₃ C ₂ T _{<i>x</i>} MXenes from Low-Cost Ti ₃ SiC ₂ MAX Phases for Superior Lithium- and Sodium-Ion Batteries. ACS Applied Materials & Sodium-Ion Batteries.	8.0	45
34	Preparation of an Amorphous Crossâ€Linked Binder for Silicon Anodes. ChemSusChem, 2019, 12, 4838-4845.	6.8	38
35	Boosting CO ₂ electroreduction over silver nanowires modified by wet-chemical sulfidation and subsequent electrochemical de-sulfidation. New Journal of Chemistry, 2019, 43, 3269-3272.	2.8	17
36	Unlocking Fewâ€Layered Ternary Chalcogenides for Highâ€Performance Potassiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1901560.	19.5	53

#	Article	IF	CITATIONS
37	Facile preparation of porous TiN-C microspheres as an efficient sulfur host for high performance lithium-sulfur battery. Materials Today Energy, 2019, 13, 1-10.	4.7	19
38	A New Intermetallic NiSn ₅ Phase: Induced Synthesis, Crystal Structure Resolution, and Investigation of Its Mechanism. Journal of Physical Chemistry Letters, 2019, 10, 2561-2566.	4.6	3
39	New, Effective, and Low-Cost Dual-Functional Binder for Porous Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Dual-Functional Binder for Porous Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Dual-Functional Binder for Porous Silicon Anodes in Lithium-Ion Batteries.	8.0	50
40	Facile Synthesis of rGO/g-C ₃ N ₄ /CNT Microspheres via an Ethanol-Assisted Spray-Drying Method for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 819-827.	8.0	79
41	Ultrathin Garnet-Type Electrolytes. , 2019, , 155-166.		0
42	Biomass carbon composited FeS 2 as cathode materials for high-rate rechargeable lithium-ion battery. Journal of Power Sources, 2018, 380, 12-17.	7.8	58
43	Electrochemical Performance of Structureâ€Dependent LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ in Aqueous Rechargeable Lithiumâ€Ion Batteries. Energy Technology, 2018, 6, 391-396.	3.8	18
44	Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Materials, 2018, 13, 8-18.	18.0	25
45	Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. Journal of Materials Chemistry A, 2018, 6, 9984-9996.	10.3	58
46	A green and facile strategy for the low-temperature and rapid synthesis of Li ₂ S@PC–CNT cathodes with high Li ₂ S content for advanced Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 9906-9914.	10.3	45
47	Nickel-Based-Hydroxide-Wrapped Activated Carbon Cloth/Sulfur Composite with Tree-Bark-Like Structure for High-Performance Freestanding Sulfur Cathode. ACS Applied Energy Materials, 2018, 1, 1594-1602.	5.1	23
48	A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. lonics, 2018, 24, 1545-1551.	2.4	18
49	Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. Journal of Materials Chemistry A, 2018, 6, 23610-23620.	10.3	20
50	Ultra-stable binder-free rechargeable Li/I ₂ batteries enabled by "Betadine―chemical interaction. Chemical Communications, 2018, 54, 12337-12340.	4.1	28
51	Rational Design of Core–Shell-Structured Particles by a One-Step and Template-Free Process for High-Performance Lithium/Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 22232-22240.	3.1	10
52	Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17933-17941.	8.0	71
53	High power rechargeable magnesium/iodine battery chemistry. Nature Communications, 2017, 8, 14083.	12.8	251
54	Scalable synthesis of Si/C anode enhanced by FeSix nanoparticles from low-cost ferrosilicon for lithium-ion batteries. Journal of Power Sources, 2017, 353, 270-276.	7.8	32

#	Article	IF	CITATIONS
55	Rechargeable Aluminum/Iodine Battery Redox Chemistry in Ionic Liquid Electrolyte. ACS Energy Letters, 2017, 2, 1170-1176.	17.4	122
56	In Situ Observation of Singleâ€Phase Lithium Intercalation in Subâ€25â€nm Nanoparticles. Advanced Materials, 2017, 29, 1700236.	21.0	16
57	A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries. Energy Storage Materials, 2017, 8, 119-126.	18.0	77
58	Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 8334-8342.	10.3	182
59	From Silica Sphere to Hollow Carbon Nitrideâ€Based Sphere: Rational Design of Sulfur Host with Both Chemisorption and Physical Confinement. Advanced Materials Interfaces, 2017, 4, 1601195.	3.7	25
60	Li/Li ₇ La ₃ Zr ₂ O ₁₂ /LiFePO ₄ All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte. Journal of Physical Chemistry C, 2017, 121, 1431-1435.	3.1	98
61	Metallic Snâ€Based Anode Materials: Application in Highâ€Performance Lithiumâ€lon and Sodiumâ€lon Batteries. Advanced Science, 2017, 4, 1700298.	11.2	315
62	A composite with SiO _x nanoparticles confined in carbon framework as an anode material for lithium ion battery. RSC Advances, 2016, 6, 40799-40805.	3.6	22
63	Structural Evolution of 3D Nanoâ€Sn/Reduced Graphene Oxide Composite from a Sandwichâ€like Structure to a Curly Sn@Carbon Nanocageâ€like Structure during Lithiation/Delithiation Cycling. Advanced Materials Interfaces, 2016, 3, 1600498.	3.7	17
64	FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. Journal of Power Sources, 2016, 331, 366-372.	7.8	36
65	Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium–sulfur battery. Electrochimica Acta, 2016, 210, 829-836.	5.2	76
66	Facial Synthesis of Three-Dimensional Cross-Linked Cage for High-Performance Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15279-15287.	8.0	37
67	Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes. Journal of Materials Chemistry A, 2016, 4, 2427-2432.	10.3	74
68	Sandwich-structured graphite-metallic silicon@C nanocomposites for Li-ion batteries. Electrochimica Acta, 2016, 191, 299-306.	5,2	23
69	Electrodeposition of Fe3O4 Thin Film and Its Application as Anode for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2016, 16, 950-955.	0.9	9
70	Average and Local Crystal Structures of (Ga _{1â€"<i>x</i>} O _{<i>x</i>}) Solid Solution Nanoparticles. Inorganic Chemistry, 2015, 54, 11226-11235.	4.0	15
71	Metal–organic nanofibers as anodes for lithium-ion batteries. RSC Advances, 2015, 5, 20386-20389.	3.6	52
72	Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 1031-1041.	6.7	86

#	Article	IF	Citations
73	Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17956-17962.	10.3	74
74	Low-temperature reduction–pyrolysis–catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Advances, 2015, 5, 55474-55477.	3.6	5
75	High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ionÂbatteries. Journal of Materiomics, 2015, 1, 153-169.	5.7	185
76	A lithiation/delithiation mechanism of monodispersed MSn $<$ sub $>$ 5 $<$ /sub $>$ (M = Fe, Co and FeCo) nanospheres. Journal of Materials Chemistry A, 2015, 3, 7170-7178.	10.3	47
77	Enhanced Electrochemical Performance of Fe _{0.74} Sn ₅ @Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7912-7919.	8.0	61
78	In Situ AFM Imaging of Solid Electrolyte Interfaces on HOPG with Ethylene Carbonate and Fluoroethylene Carbonate-Based Electrolytes. ACS Applied Materials & Electrolytes. ACS Applied M	8.0	113
79	Effect of Boron-Doping on the Graphene Aerogel Used as Cathode for the Lithium–Sulfur Battery. ACS Applied Materials & Distriction (2015), 7, 25202-25210.	8.0	158
80	Three-dimensional interconnected network GeO _x /multi-walled CNT composite spheres as high-performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 19393-19401.	10.3	25
81	Hollow silica–copper–carbon anodes using copper metal–organic frameworks as skeletons. Nanoscale, 2015, 7, 20426-20434.	5.6	49
82	A scalable formation of nano-SnO ₂ anode derived from tin metal–organic frameworks for lithium-ion battery. RSC Advances, 2015, 5, 72825-72829.	3.6	57
83	Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries. Electrochimica Acta, 2015, 180, 852-857.	5.2	36
84	Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy, 2015, 11, 490-499.	16.0	253
85	Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research, 2014, 7, 1311-1318.	10.4	73
86	Effect of mineralization agents on the surface structure and dielectric properties of SrTiO ₃ nanocrystals. CrystEngComm, 2014, 16, 10750-10753.	2.6	7
87	High lithium electroactivity of boron-doped hierarchical rutile submicrosphere TiO ₂ . Journal of Materials Chemistry A, 2014, 2, 10599-10606.	10.3	29
88	Prussian blue-derived Fe2O3/sulfur composite cathode for lithiumâ€"sulfur batteries. Materials Letters, 2014, 137, 52-55.	2.6	69
89	Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. Journal of Materials Chemistry A, 2014, 2, 9020.	10.3	41
90	Facet-Specific Assembly of Proteins on SrTiO3 Polyhedral Nanocrystals. Scientific Reports, 2014, 4, 5084.	3.3	35

#	Article	IF	Citations
91	Nitridation Temperature Effects on Electronic and Chemical Properties of (Ga _{1â€"<i>x</i>} O _{<i>x</i>}) Solid Solution Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 20332-20342.	3.1	15
92	Investigation on the electronic structure of BN nanosheets synthesized via carbon-substitution reaction: the arrangement of B, N, C and O atoms. Physical Chemistry Chemical Physics, 2013, 15, 6929.	2.8	28
93	Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications. Applied Physics Letters, 2013, 103, .	3.3	43
94	The Development of Si and Ge-Based Nanomaterials for High Performance Lithium Ion Battery Anodes. Springer Series in Materials Science, 2013, , 25-43.	0.6	1
95	Structure and luminescence properties of 10-BN sheets. Nanoscale, 2012, 4, 6951.	5.6	11
96	CoSn5 Phase: Crystal Structure Resolving and Stable High Capacity as Anodes for Li Ion Batteries. Journal of Physical Chemistry Letters, 2012, 3, 1488-1492.	4.6	31
97	Effect of Indium Doping on the Growth and Physical Properties of Ultrathin Nanosheets of GalnN/ZnO Solid Solution. Journal of Physical Chemistry C, 2011, 115, 3962-3967.	3.1	15
98	Nanospheres of a New Intermetallic FeSn ₅ Phase: Synthesis, Magnetic Properties and Anode Performance in Li-ion Batteries. Journal of the American Chemical Society, 2011, 133, 11213-11219.	13.7	88
99	Convert graphene sheets to boron nitride and boron nitride–carbon sheets via a carbon-substitution reaction. Applied Physics Letters, 2011, 98, .	3.3	60
100	Amorphous Hierarchical Porous GeO _{<i>x</i>} as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life. Journal of the American Chemical Society, 2011, 133, 20692-20695.	13.7	288
101	2D XAFS–XEOL Mapping of Ga _{1–<i>x</i>} Zn _{<i>x</i>} N _{1–<i>x</i>} O _{<i>x</i>} Nanostructured Solid Solutions. Journal of Physical Chemistry C, 2011, 115, 20507-20514.	3.1	20
102	X-ray Excited Optical Luminescence from Hexagonal Boron Nitride Nanotubes: Electronic Structures and the Role of Oxygen Impurities. ACS Nano, 2011, 5, 631-639.	14.6	34
103	Simultaneous observation of gas phase and surface species in photocatalytic reactions on nanosize Au modified TiO2: The next generation of DRIFTS systems. Chemical Engineering Journal, 2011, 170, 445-450.	12.7	6
104	Microstructure and electronic behavior of PtPd@Pt core-shell nanowires. Journal of Materials Research, 2010, 25, 711-717.	2.6	7
105	Growth and electronic properties of GaN/ZnO solid solution nanowires. Applied Physics Letters, 2010, 97, .	3.3	33
106	Carbon-coated Magn \tilde{A} ©li-phase TinO2n \hat{a} 1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells. Applied Physics Letters, 2010, 97, .	3.3	32
107	Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3709-3713.	8.0	109
108	Synthesis and optical properties of GaN/ZnO solid solution nanocrystals. Applied Physics Letters, 2010, 96, .	3.3	52

#	Article	IF	CITATIONS
109	Single-Crystal Intermetallic Mâ^'Sn (M = Fe, Cu, Co, Ni) Nanospheres as Negative Electrodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1548-1551.	8.0	129
110	Sn/SnO _{<i>x</i>} Coreâ^'Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity. Journal of Physical Chemistry C, 2010, 114, 14697-14703.	3.1	85
111	Tri- and quadri-metallic ultrathin nanowires synthesized by one-step phase-transfer approach. Nanotechnology, 2009, 20, 495605.	2.6	7
112	Electronic and Magnetic Properties of Ultrathin Au/Pt Nanowires. Nano Letters, 2009, 9, 3177-3184.	9.1	91
113	One-Dimensional Ceria as Catalyst for the Low-Temperature Waterâ^'Gas Shift Reaction. Journal of Physical Chemistry C, 2009, 113, 21949-21955.	3.1	68
114	Synthesis of Ultrathin Palladium and Platinum Nanowires and a Study of Their Magnetic Properties. Angewandte Chemie - International Edition, 2008, 47, 2055-2058.	13.8	116
115	Magnéli phases TinO2nâ^1 nanowires: Formation, optical, and transport properties. Applied Physics Letters, 2008, 92, .	3.3	51
116	Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Applied Physics Letters, 2008, 93, .	3.3	481
117	Isotope Effect on Band Gap and Radiative Transitions Properties of Boron Nitride Nanotubes. Nano Letters, 2008, 8, 491-494.	9.1	83
118	Formation of Pd/Au Nanostructures from Pd Nanowires via Galvanic Replacement Reaction. Journal of the American Chemical Society, 2008, 130 , $1093-1101$.	13.7	146
119	Hybrid Pt/Au Nanowires: Synthesis and Electronic Structure. Journal of Physical Chemistry C, 2008, 112, 14696-14701.	3.1	40
120	Fe-Doped Trititanate Nanotubes:  Formation, Optical and Magnetic Properties, and Catalytic Applications. Journal of Physical Chemistry C, 2007, 111, 14339-14342.	3.1	34
121	Characterization and Surface Reactivity of Ferrihydrite Nanoparticles Assembled in Ferritin. Langmuir, 2006, 22, 9313-9321.	3 . 5	53
122	Silicon doped boron carbide nanorod growth via a solid-liquid-solid process. Applied Physics Letters, 2006, 88, 133118.	3.3	18
123	Formation and growth mechanism of B10N nanotubes via a carbon nanotube–substitution reaction. Applied Physics Letters, 2006, 89, 173103.	3.3	25
124	Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials. Small, 2006, 2, 26-35.	10.0	152
125	The preparation and characterization of photocatalytically active TiO2 thin films and nanoparticles using Successive-Ionic-Layer-Adsorption-and-Reaction. Thin Solid Films, 2006, 515, 1250-1254.	1.8	21
126	Oxygen-Deficiency-Induced Superlattice Structures of Chromia Nanobelts. Angewandte Chemie - International Edition, 2006, 45, 6554-6558.	13.8	17

#	Article	IF	Citations
127	Formation and Oxidation State of CeO2-xNanotubes. Journal of the American Chemical Society, 2005, 127, 12814-12815.	13.7	235
128	Synthesis and Characterization of Bi Nanorods and Superconducting NiBi Particles ChemInform, 2005, 36, no.	0.0	0
129	Thermal conductivity of B–C–N and BN nanotubes. Applied Physics Letters, 2005, 86, 173102.	3.3	117
130	In-situ Formation of Ultrathin Ge Nanobelts Bonded with Nanotubes. Nano Letters, 2005, 5, 1419-1422.	9.1	29
131	Synthesis and characterization of Bi nanorods and superconducting NiBi particles. Journal of Alloys and Compounds, 2005, 400, 88-91.	5.5	31
132	Investigating the structure of boron nitride nanotubes by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Physical Chemistry Chemical Physics, 2005, 7, 1103.	2.8	38
133	Nanocrystal cleaving. Applied Physics Letters, 2004, 84, 2644-2645.	3.3	9
134	Activated Boron Nitride Derived from Activated Carbon. Nano Letters, 2004, 4, 173-176.	9.1	96
135	Encapsulation of One-Dimensional Potassium Halide Crystals within BN Nanotubes. Nano Letters, 2004, 4, 1355-1357.	9.1	78
136	Trapping and aligning carbon nanotubes via substrate geometry engineering. New Journal of Physics, 2004, 6, 15-15.	2.9	4
137	Raman Spectroscopy and Time-Resolved Photoluminescence of BN and BxCyNzNanotubes. Nano Letters, 2004, 4, 647-650.	9.1	194
138	Coating Single-Walled Carbon Nanotubes with Tin Oxide. Nano Letters, 2003, 3, 681-683.	9.1	325
139	Effect of changing incident wavelength on Raman features of optical phonons in SiC nanorods and TaC nanowires. Solid State Communications, 2003, 126, 649-651.	1.9	26
140	Rotational actuators based on carbon nanotubes. Nature, 2003, 424, 408-410.	27.8	1,098
141	Functionalized Boron Nitride Nanotubes with a Stannic Oxide Coating:Â A Novel Chemical Route to Full Coverage. Journal of the American Chemical Society, 2003, 125, 2062-2063.	13.7	84
142	Packing C60 in Boron Nitride Nanotubes. Science, 2003, 300, 467-469.	12.6	292
143	Pyrolysis approach to the synthesis of gallium nitride nanorods. Applied Physics Letters, 2002, 80, 303-305.	3.3	103
144	GaN nanorods coated with pure BN. Applied Physics Letters, 2002, 81, 5051-5053.	3.3	65

#	Article	IF	CITATIONS
145	Transformation of BxCyNz nanotubes to pure BN nanotubes. Applied Physics Letters, 2002, 81, 1110-1112.	3.3	179
146	Synthesis of aligned BxCyNz nanotubes by a substitution-reaction route. Chemical Physics Letters, 2001, 346, 368-372.	2.6	72
147	Pyrolytically grown arrays of highly aligned BxCyNz nanotubes. Applied Physics Letters, 2001, 78, 2769-2771.	3.3	39
148	Growth and microstructure of Ga2O3 nanorods. Solid State Communications, 2000, 115, 527-529.	1.9	70
149	Synthesis of GaN–carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere. Applied Physics Letters, 2000, 76, 652-654.	3.3	151
150	Aligned CN[sub x] nanotubes by pyrolysis of ferrocene/C[sub 60] under NH[sub 3] atmosphere. Applied Physics Letters, 2000, 77, 1807.	3.3	112
151	Formation of Boron Nitride (BN) Fullerene-Like Nanoparticles and (BN)xCy Nanotubes Using Carbon Nanotubes as Templates. Japanese Journal of Applied Physics, 1999, 38, L755-L757.	1.5	31
152	Boron-doped carbon nanotubes prepared through a substitution reaction. Chemical Physics Letters, 1999, 299, 368-373.	2.6	205
153	Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Applied Physics Letters, 1999, 75, 1875-1877.	3.3	85
154	Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Applied Physics Letters, 1998, 73, 3085-3087.	3.3	435
155	Conversion of Nickel Coated Carbon Nanotubes to Diamond under High Pressure and High Temperature. Japanese Journal of Applied Physics, 1998, 37, L1085-L1086.	1.5	11
156	Mössbauer Study of Catalytically Grown Carbon Nanotube. Chinese Physics Letters, 1998, 15, 68-69.	3.3	4
157	Synthesis of silicon nitride nanorods using carbon nanotube as a template. Applied Physics Letters, 1997, 71, 2271-2273.	3.3	191
158	Coating of Carbon Nanotube with Nickel by Electroless Plating Method. Japanese Journal of Applied Physics, 1997, 36, L501-L503.	1.5	117
159	Continuous synthesis and characterization of silicon carbide nanorods. Chemical Physics Letters, 1997, 265, 374-378.	2.6	212
160	Study on crystallization of hydrogenated nanocrystalline silicon carbon films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 41, 357-361.	3.5	5
161	Structural Nature of Nanocrystalline Silicon. Materials Research Society Symposia Proceedings, 1993, 297, 381.	0.1	2
162	Study of a-Si:H/νc-Si:H Heterojunction as Photosensor for Large Screen Projection Display. Materials Research Society Symposia Proceedings, 1992, 258, 1099.	0.1	0

#	Article	IF	CITATIONS
163	Investigation of Optimal Photosensor in A-Si:H Liquid Crystal Light Valves. Materials Research Society Symposia Proceedings, 1992, 258, 1175.	0.1	4
164	Characterization of A-Si: H and A-SiGe: H Films in Liquid Crystal Light Valve. Materials Research Society Symposia Proceedings, 1991, 219, 179.	0.1	3