
Kunlaya Somboonwiwat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2510389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Developmental and Comparative Immunology, 2018, 80, 81-93.	2.3	235
2	Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp. Developmental and Comparative Immunology, 2005, 29, 841-851.	2.3	177
3	Sequence diversity and evolution of antimicrobial peptides in invertebrates. Developmental and Comparative Immunology, 2015, 48, 324-341.	2.3	135
4	Role of anti-lipopolysaccharide factor from the black tiger shrimp, Penaeus monodon, in protection from white spot syndrome virus infection. Journal of General Virology, 2009, 90, 1491-1498.	2.9	103
5	Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, Penaeus monodon, and characterization of its binding properties. Developmental and Comparative Immunology, 2008, 32, 1170-1176.	2.3	90
6	Proteomic analysis of differentially expressed proteins in Penaeus monodon hemocytes after Vibrio harveyi infection. Proteome Science, 2010, 8, 39.	1.7	70
7	Differentially Expressed Genes in Hemocytes of Vibrio harveyi-challenged Shrimp Penaeus monodon. BMB Reports, 2006, 39, 26-36.	2.4	63
8	Anti-lipopolysaccharide factor isoform 3 from Penaeus monodon (ALFPm3) exhibits antiviral activity by interacting with WSSV structural proteins. Antiviral Research, 2014, 110, 142-150.	4.1	52
9	Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection. Developmental and Comparative Immunology, 2016, 60, 191-201.	2.3	49
10	Antiviral action of the antimicrobial peptide ALFPm3 from Penaeus monodon against white spot syndrome virus. Developmental and Comparative Immunology, 2017, 69, 23-32.	2.3	39
11	ICTV Virus Taxonomy Profile: Nimaviridae. Journal of General Virology, 2019, 100, 1053-1054.	2.9	38
12	Differentially expressed genes in hemocytes of Litopenaeus vannamei challenged with Vibrio parahaemolyticus AHPND (VPAHPND) and VPAHPND toxin. Fish and Shellfish Immunology, 2018, 81, 284-296.	3.6	36
13	Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells. PLoS Pathogens, 2020, 16, e1008346.	4.7	36
14	Hemocyanin of Litopenaeus vannamei agglutinates Vibrio parahaemolyticus AHPND (VPAHPND) and neutralizes its toxin. Developmental and Comparative Immunology, 2018, 84, 371-381.	2.3	28
15	White Spot Syndrome Virus-Induced Shrimp miR-315 Attenuates Prophenoloxidase Activation via PPAE3 Gene Suppression. Frontiers in Immunology, 2018, 9, 2184.	4.8	25
16	Regulation of antilipopolysaccharide factors, ALFPm3 and ALFPm6, in Penaeus monodon. Scientific Reports, 2017, 7, 12694.	3.3	22
17	Regulation of shrimp prophenoloxidase activating system by lva-miR-4850 during bacterial infection. Scientific Reports, 2021, 11, 3821.	3.3	19
18	Cytotoxicity of Vibrio parahaemolyticus AHPND toxin on shrimp hemocytes, a newly identified target tissue, involves binding of toxin to aminopeptidase N1 receptor. PLoS Pathogens, 2021, 17, e1009463.	4.7	19

#	Article	lF	CITATIONS
19	MicroRNA and mRNA interactions coordinate the immune response in non-lethal heat stressed Litopenaeus vannamei against AHPND-causing Vibrio parahaemolyticus. Scientific Reports, 2020, 10, 787.	3.3	19
20	PmVRP15, a Novel Viral Responsive Protein from the Black Tiger Shrimp, Penaeus monodon, Promoted White Spot Syndrome Virus Replication. PLoS ONE, 2014, 9, e91930.	2.5	19
21	A potential application of shrimp antilipopolysaccharide factor in disease control in aquaculture. Aquaculture Research, 2017, 48, 809-821.	1.8	15
22	WSV399, a viral tegument protein, interacts with the shrimp protein PmVRP15 to facilitate viral trafficking and assembly. Developmental and Comparative Immunology, 2016, 59, 177-185.	2.3	8
23	Transcriptome profiling reveals the novel immunometabolism-related genes against WSSV infection from Fenneropenaeus merguiensis. Fish and Shellfish Immunology, 2022, 120, 31-44.	3.6	7
24	Shrimp Vago5 activates an innate immune defense upon bacterial infection. Fish and Shellfish Immunology, 2022, 120, 122-132.	3.6	7
25	Plasmolipin, PmPLP1, from Penaeus monodon is a potential receptor for yellow head virus infection. Developmental and Comparative Immunology, 2018, 88, 137-143.	2.3	5
26	Editorial: Aquatic Invertebrate Immunity Against Infectious Diseases. Frontiers in Immunology, 2021, 12, 762082.	4.8	2
27	WSSV-responsive gene expression under the influence of PmVRP15 suppression. Fish and Shellfish Immunology, 2018, 72, 86-94.	3.6	1
28	Genome organization and definition of the Penaeus monodon viral responsive protein 15 (PmVRP15) promoter. Fish and Shellfish Immunology, 2019, 93, 997-1006.	3.6	1
29	Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells. , 2020, 16, e1008346.		Ο
30	Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells. , 2020, 16, e1008346.		0
31	Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells. , 2020, 16, e1008346.		Ο
32	Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells. , 2020, 16, e1008346.		0