
Richard J Norby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2509046/publications.pdf Version: 2024-02-01

RICHARD I NORRY

#	Article	IF	CITATIONS
1	Whole-Ecosystem Warming Increases Plant-Available Nitrogen and Phosphorus in an Ombrotrophic Bog. Ecosystems, 2023, 26, 86-113.	1.6	13
2	Changes in leaf functional traits with leaf age: when do leaves decrease their photosynthetic capacity in Amazonian trees?. Tree Physiology, 2022, 42, 922-938.	1.4	14
3	Forest stand and canopy development unaltered by 12Âyears of CO2 enrichment*. Tree Physiology, 2022, 42, 428-440.	1.4	12
4	Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nature Ecology and Evolution, 2022, 6, 315-323.	3.4	15
5	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	3.5	286
6	Extending a land-surface model with <i>Sphagnum</i> moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO ₂ . Biogeosciences, 2021, 18, 467-486.	1.3	17
7	Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico. Ecology and Evolution, 2021, 11, 1150-1164.	0.8	28
8	Comment on "Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees― Science, 2021, 371, .	6.0	16
9	Resolution of Respect: Jerry S. Olson (1928–2021). Bulletin of the Ecological Society of America, 2021, 102, e01879.	0.2	0
10	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
11	Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil, 2021, 466, 649-674.	1.8	15
12	Trade-Offs in Phosphorus Acquisition Strategies of Five Common Tree Species in a Tropical Forest of Puerto Rico. Frontiers in Forests and Global Change, 2021, 4, .	1.0	10
13	Experimental warming and its legacy effects on root dynamics following two hurricane disturbances in a wet tropical forest. Global Change Biology, 2021, 27, 6423-6435.	4.2	12
14	Fine roots stimulate nutrient release during early stages of leaf litter decomposition in a Central Amazon rainforest. Plant and Soil, 2021, 469, 287-303.	1.8	21
15	Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances. Frontiers in Forests and Global Change, 2021, 4, .	1.0	13
16	Rapid Net Carbon Loss From a Wholeâ€Ecosystem Warmed Peatland. AGU Advances, 2020, 1, e2020AV000163.	2.3	69
17	Fineâ€root dynamics vary with soil depth and precipitation in a lowâ€nutrient tropical forest in the Central Amazonia. Plant-Environment Interactions, 2020, 1, 3-16.	0.7	34
18	Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences, 2020, 17, 3017-3044.	1.3	82

#	Article	IF	CITATIONS
19	A historical and comparative review of 50 years of root data collection in Puerto Rico. Biotropica, 2020, 52, 563-576.	0.8	12
20	A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.	3.4	304
21	Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 2019, 12, 736-741.	5.4	177
22	Rapid loss of an ecosystem engineer: <i>Sphagnum</i> decline in an experimentally warmed bog. Ecology and Evolution, 2019, 9, 12571-12585.	0.8	92
23	The Effects of Phosphorus Cycle Dynamics on Carbon Sources and Sinks in the Amazon Region: A Modeling Study Using ELM v1. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3686-3698.	1.3	29
24	Performance of Laser-Based Electronic Devices for Structural Analysis of Amazonian Terra-Firme Forests. Remote Sensing, 2019, 11, 510.	1.8	7
25	Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 2019, 10, 454.	5.8	68
26	Controls on Fine-Scale Spatial and Temporal Variability of Plant-Available Inorganic Nitrogen in a Polygonal Tundra Landscape. Ecosystems, 2019, 22, 528-543.	1.6	21
27	Endogeic earthworm densities increase in response to higher fine-root production in a forest exposed to elevated CO2. Soil Biology and Biochemistry, 2018, 122, 31-38.	4.2	8
28	Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant and Soil, 2018, 424, 123-143.	1.8	58
29	Does elevated atmospheric CO ₂ affect soil carbon burial and soil weathering in a forest ecosystem?. PeerJ, 2018, 6, e5356.	0.9	2
30	Challenging terrestrial biosphere models with data from the longâ€ŧerm multifactor Prairie Heating and <scp>CO</scp> ₂ Enrichment experiment. Global Change Biology, 2017, 23, 3623-3645.	4.2	42
31	Biophysical drivers of seasonal variability in <i>Sphagnum</i> gross primary production in a northern temperate bog. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1078-1097.	1.3	22
32	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
33	Introduction to a <i>Virtual Issue</i> on root traits. New Phytologist, 2017, 215, 5-8.	3.5	3
34	Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. New Phytologist, 2017, 215, 1425-1437.	3.5	46
35	Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest. Frontiers in Plant Science, 2017, 8, 1834.	1.7	54
36	Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystemâ€6cale Warming Experiment. Soil Science Society of America Journal, 2017, 81, 1668-1688.	1.2	34

#	Article	IF	CITATIONS
37	Evaluating the Community Land Model in a pine stand with shading manipulations and ¹³ CO ₂ labeling. Biogeosciences, 2016, 13, 641-657.	1.3	18
38	Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets. Remote Sensing, 2016, 8, 733.	1.8	34
39	Model–data synthesis for the next generation of forest freeâ€air <scp>CO</scp> ₂ enrichment (<scp>FACE</scp>) experiments. New Phytologist, 2016, 209, 17-28.	3.5	178
40	Using models to guide field experiments: <i>a priori</i> predictions for the <scp>CO</scp> ₂ response of a nutrient―and waterâ€Iimited native Eucalypt woodland. Global Change Biology, 2016, 22, 2834-2851.	4.2	77
41	Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change, 2016, 6, 950-953.	8.1	288
42	Predicting longâ€ŧerm carbon sequestration in response to CO ₂ enrichment: How and why do current ecosystem models differ?. Global Biogeochemical Cycles, 2015, 29, 476-495.	1.9	99
43	A panâ€Arctic synthesis of CH ₄ and CO ₂ production from anoxic soil incubations. Global Change Biology, 2015, 21, 2787-2803.	4.2	138
44	Forest soil carbon oxidation state and oxidative ratio responses to elevated CO 2. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1797-1811.	1.3	19
45	Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1000-1017.	1.3	22
46	Using ecosystem experiments to improve vegetation models. Nature Climate Change, 2015, 5, 528-534.	8.1	249
47	The unseen iceberg: plant roots in arctic tundra. New Phytologist, 2015, 205, 34-58.	3.5	260
48	Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment. AoB PLANTS, 2015, 7, .	1.2	51
49	Redefining fine roots improves understanding of belowâ€ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207, 505-518.	3.5	906
50	Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest freeâ€air CO ₂ enrichment sites. New Phytologist, 2014, 203, 883-899.	3.5	263
51	Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate <scp>F</scp> reeâ€ <scp>A</scp> ir <scp>CO</scp> ₂ <scp> E</scp> nrichment studies. New Phytologist, 2014, 202, 803-822.	3.5	378
52	Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant, Cell and Environment, 2014, 37, 978-994.	2.8	90
53	Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany, 2014, 114, 1-16.	1.4	240
54	Impact of mesophyll diffusion on estimated global land CO ₂ fertilization. Proceedings of the United States of America, 2014, 111, 15774-15779.	3.3	129

#	Article	IF	CITATIONS
55	Comprehensive ecosystem modelâ€data synthesis using multiple data sets at two temperate forest freeâ€air CO ₂ enrichment experiments: Model performance at ambient CO ₂ concentration. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 937-964.	1.3	95
56	Terrestrial Plant Productivity and Carbon Allocation in a Changing Climate. , 2014, , 297-316.		4
57	Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology, 2013, 40, 531.	1.1	118
58	Elevated <scp>CO</scp> ₂ increases treeâ€level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest <scp>FACE</scp> sites. New Phytologist, 2013, 197, 544-554.	3.5	210
59	Forest water use and water use efficiency at elevated <scp><scp>CO₂</scp></scp> : a modelâ€data intercomparison at two contrasting temperate forest <scp>FACE</scp> sites. Global Change Biology, 2013, 19, 1759-1779.	4.2	314
60	Sensitivity of plants to changing atmospheric <scp>CO</scp> ₂ concentration: from the geological past to the next century. New Phytologist, 2013, 197, 1077-1094.	3.5	336
61	Stored carbon partly fuels fineâ€root respiration but is not used for production of new fine roots. New Phytologist, 2013, 199, 420-430.	3.5	69
62	From systems biology to photosynthesis and whole-plant physiology. Plant Signaling and Behavior, 2012, 7, 260-262.	1.2	13
63	Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments. Tree Physiology, 2012, 32, 799-813.	1.4	38
64	A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.	1.3	267
65	Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2. Oecologia, 2012, 169, 915-925.	0.9	19
66	Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging. Ecology and Evolution, 2012, 2, 1235-1250.	0.8	59
67	Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan. Ambio, 2012, 41, 350-369.	2.8	69
68	Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11Âyears of CO ₂ â€enrichment. Global Change Biology, 2012, 18, 1684-1697.	4.2	74
69	Ecological Lessons from Free-Air CO ₂ Enrichment (FACE) Experiments. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 181-203.	3.8	558
70	Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology, 2011, 47, 37-44.	2.1	175
71	Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO ₂]. Global Change Biology, 2011, 17, 1130-1139.	4.2	48
72	Coordinated approaches to quantify longâ€ŧerm ecosystem dynamics in response to global change. Global Change Biology, 2011, 17, 843-854.	4.2	165

#	Article	IF	CITATIONS
73	Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytologist, 2011, 189, 797-805.	3.5	76
74	Carbon cycling in tropical ecosystems. New Phytologist, 2011, 189, 893-894.	3.5	4
75	Modeling soil respiration and variations in source components using a multi-factor global climate change experiment. Climatic Change, 2011, 107, 459-480.	1.7	33
76	Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO ₂ . Ecohydrology, 2011, 4, 196-210.	1.1	96
77	Field litter decomposition rate estimation: Does incubation starting time matter?. , 2011, , .		0
78	Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology, 2011, 31, 117-130.	1.4	152
79	Litterfall ¹⁵ N abundance indicates declining soil nitrogen availability in a free-air CO ₂ enrichment experiment. Ecology, 2011, 92, 133-139.	1.5	55
80	Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental oldâ€field ecosystem. Global Change Biology, 2010, 16, 2676-2687.	4.2	210
81	CO2 enrichment accelerates successional development of an understory plant community. Journal of Plant Ecology, 2010, 3, 33-39.	1.2	28
82	CO ₂ enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19368-19373.	3.3	814
83	Soil Microbial Community Responses to Multiple Experimental Climate Change Drivers. Applied and Environmental Microbiology, 2010, 76, 999-1007.	1.4	690
84	Climate Change Alters Seedling Emergence and Establishment in an Old-Field Ecosystem. PLoS ONE, 2010, 5, e13476.	1.1	39
85	Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.	4.3	46
86	A comment on "Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality―by Aronson and McNulty. Agricultural and Forest Meteorology, 2010, 150, 497-498.	1.9	56
87	Responses of an old-field plant community to interacting factors of elevated [CO2], warming, and soil moisture. Journal of Plant Ecology, 2009, 2, 1-11.	1.2	53
88	Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant and Soil, 2009, 319, 85-94.	1.8	86
89	Forest fineâ€root production and nitrogen use under elevated CO ₂ : contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biology, 2009, 15, 132-144.	4.2	72
90	Elevated air temperature alters an oldâ€field insect community in a multifactor climate change experiment. Global Change Biology, 2009, 15, 930-942.	4.2	47

#	Article	IF	CITATIONS
91	Introduction to a <i>Virtual Special Issue</i> : probing the carbon cycle with ¹³ C. New Phytologist, 2009, 184, 1-3.	3.5	13
92	Role of N2-fixation in Constructed Old-field Communities Under Different Regimes of [CO2], Temperature, and Water Availability. Ecosystems, 2008, 11, 125-137.	1.6	37
93	Increased mercury in forest soils under elevated carbon dioxide. Oecologia, 2008, 158, 343-354.	0.9	16
94	CO ₂ enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist, 2008, 179, 837-847.	3.5	146
95	Next generation of elevated [CO ₂] experiments with crops: a critical investment for feeding the future world. Plant, Cell and Environment, 2008, 31, 1317-1324.	2.8	154
96	Nitrogen limitation in a sweetgum plantation: implications for carbon allocation and storage. Canadian Journal of Forest Research, 2008, 38, 1021-1032.	0.8	37
97	Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology, 2008, 35, 521.	1.1	133
98	Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14014-14019.	3.3	353
99	lsoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1677-1695.	1.6	121
100	CO2 Fertilization: When, Where, How Much?. , 2007, , 9-21.		60
101	Responses of soil respiration to elevated CO ₂ , air warming, and changing soil water availability in a model oldâ€field grassland. Global Change Biology, 2007, 13, 2411-2424.	4.2	295
102	The likely impact of elevated [CO 2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 2007, 173, 463-480.	3.5	579
103	New Phytologist and the Environment. New Phytologist, 2007, 174, 1-3.	3.5	8
104	How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?. Plant and Soil, 2007, 301, 255-266.	1.8	101
105	Ecosystem Responses to Warming and Interacting Global Change Factors. Clobal Change - the IGBP Series, 2007, , 23-36.	2.1	16
106	Belowground Responses to Atmospheric Carbon Dioxide in Forests. , 2006, , 397-418.		11
107	NITROGEN UPTAKE, DISTRIBUTION, TURNOVER, AND EFFICIENCY OF USE IN A CO2-ENRICHED SWEETGUM FOREST. Ecology, 2006, 87, 5-14.	1.5	117
108	Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology, 2005, 11, 1402-1423.	4.2	83

#	Article	IF	CITATIONS
109	Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology, 2005, 11, 2057-2064.	4.2	221
110	Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the United States of America, 2005, 102, 18052-18056.	3.3	880
111	Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle. Global Biogeochemical Cycles, 2005, 19, .	1.9	72
112	Modern and Future Forests in a Changing Atmosphere. , 2005, , 394-414.		3
113	The Changing Role of Forests in the Global Carbon Cycle. Books in Soils, Plants, and the Environment, 2005, , 187-222.	0.1	Ο
114	Response to Comment on "Impacts of Fine Root Turnover on Forest NPP and Soil C Sequestration Potential". Science, 2004, 304, 1745d-1745d.	6.0	7
115	Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9689-9693.	3.3	349
116	A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology, 2004, 10, 1027-1042.	4.2	155
117	Response of an understory plant community to elevated [CO 2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 2004, 161, 827-835.	3.5	88
118	Persistent stimulation of photosynthesis by elevated CO 2 in a sweetgum (Liquidambar styraciflua) forest stand. New Phytologist, 2004, 162, 343-354.	3.5	68
119	Evaluating ecosystem responses to rising atmospheric CO 2 and global warming in a multiâ€factor world. New Phytologist, 2004, 162, 281-293.	3.5	386
120	CO 2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 2004, 162, 437-446.	3.5	102
121	Effects of elevated CO2on nutrient cycling in a sweetgum plantation. Biogeochemistry, 2004, 69, 379-403.	1.7	98
122	Soil C Accumulation in a White Oak CO2-Enrichment Experiment via Enhanced Root Production. Earth Interactions, 2004, 8, 1-15.	0.7	3
123	Leaf dynamics of a deciduous forest canopy: no response to elevated CO 2. Oecologia, 2003, 136, 574-584.	0.9	106
124	Development of gypsy moth larvae feeding on red maple saplings at elevated CO 2 and temperature. Oecologia, 2003, 137, 114-122.	0.9	74
125	Widespread foliage δ 15 N depletion under elevated CO2 : inferences for the nitrogen cycle. Global Change Biology, 2003, 9, 1582-1590.	4.2	52
126	Fineâ€root respiration in a loblolly pine and sweetgum forest growing in elevated CO 2. New Phytologist, 2003, 160, 511-522.	3.5	75

#	Article	IF	CITATIONS
127	Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 2003, 9, 1792-1801.	4.2	148
128	The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy, 2003, 3, 149-157.	2.6	36
129	The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy, 2003, 3, 149-157.	2.6	177
130	Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Applied Soil Ecology, 2003, 24, 263-271.	2.1	139
131	Impacts of Fine Root Turnover on Forest NPP and Soil C Sequestration Potential. Science, 2003, 302, 1385-1387.	6.0	440
132	SOIL NITROGEN CYCLING UNDER ELEVATED CO2: A SYNTHESIS OF FOREST FACE EXPERIMENTS. , 2003, 13, 1508-1514.		114
133	Net Primary Productivity of a CO 2 -Enriched Deciduous Forest and the Implications for Carbon Storage. , 2002, 12, 1261.		7
134	NET PRIMARY PRODUCTIVITY OF A CO2-ENRICHED DECIDUOUS FOREST AND THE IMPLICATIONS FOR CARBON STORAGE. , 2002, 12, 1261-1266.		91
135	Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell and Environment, 2002, 25, 379-393.	2.8	131
136	Sensitivity of stomatal and canopy conductance to elevated CO 2 concentration–Âinteracting variables and perspectives of scale. New Phytologist, 2002, 153, 485-496.	3.5	158
137	Stem respiration increases in CO2-enriched sweetgum trees. New Phytologist, 2002, 155, 239-248.	3.5	46
138	Plant water relations at elevated CO2 - implications for water-limited environments. Plant, Cell and Environment, 2002, 25, 319-331.	2.8	352
139	A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126, 543-562.	0.9	1,877
140	Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia, 2001, 127, 153-165.	0.9	400
141	Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytologist, 2001, 150, 489-498.	3.5	101
142	Allometric determination of tree growth in a CO2 -enriched sweetgum stand. New Phytologist, 2001, 150, 477-487.	3.5	155
143	Rising CO2 - future ecosystems. New Phytologist, 2001, 150, 215-221.	3.5	38
144	Aboveground Growth and Competition in Forest Gap Models: An Analysis for Studies of Climatic Change, 2001, 51, 415-447.	1.7	48

#	Article	IF	CITATIONS
145	Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 2000, 147, 3-12.	3.5	333
146	Genetic variation and spatial structure in sugar maple (Acer saccharumMarsh.) and implications for predicted global-scale environmental change. Global Change Biology, 2000, 6, 335-344.	4.2	19
147	Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Global Change Biology, 2000, 6, 685-695.	4.2	68
148	Effects of elevated atmospheric CO2 and temperature on leaf optical properties in Acer saccharum. Environmental and Experimental Botany, 2000, 43, 267-273.	2.0	49
149	Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosephere. Plant and Soil, 2000, 224, 15-29.	1.8	133
150	Atmospheric CO2and Ecosystem Feedback Between C and N Cycles: Synthesis of an Integrated Experiment*. , 2000, 10, 1-2.		0
151	Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field evidence. Tree Physiology, 2000, 20, 87-96.	1.4	185
152	Tree responses to rising CO2in field experiments: implications for the future forest. Plant, Cell and Environment, 1999, 22, 683-714.	2.8	691
153	Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric CO 2 enrichment. Plant, Cell and Environment, 1999, 22, 1109-1119.	2.8	33
154	The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis. Global Change Biology, 1999, 5, 331-346.	4.2	109
155	Title is missing!. Plant and Soil, 1999, 217, 195-204.	1.8	44
156	Title is missing!. Plant and Soil, 1998, 206, 85-97.	1.8	91
157	A question of litter quality. Nature, 1998, 396, 17-18.	13.7	153
158	Nutrient cycling and fertility management in temperate short rotation forest systems. Biomass and Bioenergy, 1998, 14, 361-370.	2.9	82
159	Nitrogen deposition: a component of global change analyses. New Phytologist, 1998, 139, 189-200.	3.5	71
160	Leaf age effects of elevated CO 2 â€grown white oak leaves on springâ€feeding lepidopterans. Global Change Biology, 1998, 4, 235-246.	4.2	57
161	Energetic Costs of Tissue Construction in Yellow-poplar and White Oak Trees Exposed to Long-term CO2Enrichment. Annals of Botany, 1997, 80, 289-297.	1.4	36
162	Consequences of Rising Atmospheric Carbon Dioxide Levels for the Belowground Microbiota Associated with White Oak. Journal of Environmental Quality, 1997, 26, 495-503.	1.0	79

#	Article	IF	CITATIONS
163	Temperatureâ€controlled openâ€top chambers for global change research. Global Change Biology, 1997, 3, 259-267.	4.2	115
164	Oaks in a high-CO2 world. Annales Des Sciences Forestières, 1996, 53, 413-429.	1.1	15
165	Litter Quality and Decomposition Rates of Foliar Litter Produced under CO2 Enrichment. , 1996, , 87-103.		71
166	Tree Responses to Elevated CO2 and Implications for Forests. , 1996, , 1-21.		29
167	Forest canopy productivity index. Nature, 1996, 381, 564-564.	13.7	40
168	Growth and maintenance respiration in stems of Quercus alba after four years of CO2 enrichment. Physiologia Plantarum, 1995, 93, 47-54.	2.6	41
169	Interactions between drought and elevated CO 2 on growth and gas exchange of seedlings of three deciduous tree species. New Phytologist, 1995, 129, 63-71.	3.5	74
170	Increased growth efficiency of Quercus alba trees in a CO 2 â€enriched atmosphere. New Phytologist, 1995, 131, 91-97.	3.5	80
171	Interactions between drought and elevated CO2on osmotic adjustment and solute concentrations of tree seedlings. New Phytologist, 1995, 131, 169-177.	3.5	32
172	Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil, 1994, 165, 9-20.	1.8	209
173	Nitrogen fertilization strategies in a short-rotation sycamore plantation. Forest Ecology and Management, 1994, 64, 13-24.	1.4	51
174	Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. , 1994, , 9-20.		58
175	Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: no loss of photosynthetic enhancement. Plant, Cell and Environment, 1993, 16, 797-807.	2.8	164
176	Physiological indicators of nitrogen response in a short rotation sycamore plantation. II. Nitrogen metabolism. Canadian Journal of Botany, 1993, 71, 841-847.	1.2	6
177	Seasonal variation in nitrate reductase activity in needles of high-elevation red spruce trees. Canadian Journal of Forest Research, 1992, 22, 375-380.	0.8	13
178	Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO ₂ enrichment. Canadian Journal of Forest Research, 1992, 22, 1717-1721.	0.8	66
179	Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature, 1992, 357, 322-324.	13.7	343
180	Growth and maintenance respiration in leaves of Liriodendron tulipifera L. exposed to long-term carbon dioxide enrichment in the field. New Phytologist, 1992, 121, 515-523.	3.5	96

#	Article	IF	CITATIONS
181	Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environmental Pollution, 1991, 73, 271-284.	3.7	108
182	Differential response of CO2 uptake parameters of soil- and sand-grown phaseolus vulgaris (L.) plants to absorbed ozone flux. Environmental Pollution, 1991, 74, 251-261.	3.7	5
183	Leaf area compensation and nutrient interactions in CO2-enriched seedlings of yellow-poplar (Liriodendron tulipifera L.). New Phytologist, 1991, 117, 515-528.	3.5	161
184	Physiological indicators of nitrogen response in a short rotation sycamore plantation. I. CO2 assimilation, photosynthetic pigments and soluble carbohydrates. Physiologia Plantarum, 1991, 82, 117-126.	2.6	15
185	Atmospheric Pollution and Terrestrial Vegetation: Evidence of Changes, Linkages, and Significance to Selection Processes. , 1991, , 61-101.		6
186	Physiological indicators of nitrogen response in a short rotation sycamore plantation. I. CO2 assimilation, photosynthetic pigments and soluble carbohydrates. Physiologia Plantarum, 1991, 82, 117-126.	2.6	2
187	Induction of nitrate reductase activity in red spruce needles by NO2 and HNO3 vapor. Canadian Journal of Forest Research, 1989, 19, 889-896.	0.8	86
188	Nitrogen fixation in the lichen Lobaria pulmonaria in elevated atmospheric carbon dioxide. Oecologia, 1989, 79, 566-568.	0.9	15
189	Growth dynamics and water use of seedlings of Quercus alba L. in CO 2 â€enriched atmospheres. New Phytologist, 1989, 111, 491-500.	3.5	87
190	Yield and physiological responses of soybeans to simulated acid rain and gaseous pollutants in the field. Environmental Pollution, 1988, 53, 436-437.	3.7	0
191	Increases in mycorrhizal colonization and seedling growth in Pinusechinata and Quercusalba in an enriched CO2 atmosphere. Canadian Journal of Forest Research, 1987, 17, 878-883.	0.8	156
192	Elevated atmospheric CO2 effects on seedling growth, nutrient uptake, and rhizosphere bacterial populations ofLiriodendron tulipifera L Plant and Soil, 1987, 104, 3-11.	1.8	144
193	Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiologia Plantarum, 1987, 71, 77-82.	2.6	128
194	Acetylene reduction rate as a physiological indicator of the response of field-grown soybeans to simulated acid rain and ambient gaseous pollutants. Environmental and Experimental Botany, 1986, 26, 285-290.	2.0	6
195	Carbon dioxide assimilation and growth of red spruce (Picea rubens Sarg.) seedlings in response to ozone, precipitation chemistry, and soil type. Oecologia, 1986, 70, 163-171.	0.9	79
196	Effects of Atmospheric CO ₂ Enrichment on the Growth and Mineral Nutrition of <i>Quercus alba</i> Seedlings in Nutrient-Poor Soil. Plant Physiology, 1986, 82, 83-89.	2.3	378
197	Carbon-nitrogen interactions in CO2-enriched white oak: physiological and long-term perspectives. Tree Physiology, 1986, 2, 233-241.	1.4	153
198	PHYSIOLOGICAL PROCESSES IN SOYBEAN INHIBITED BY GASEOUS POLLUTANTS BUT NOT BY ACID RAIN. New Phytologist, 1985, 100, 79-85.	3.5	26

Richard J Norby

#	Article	IF	CITATIONS
199	GROWTH ANALYSIS OF SOYBEAN EXPOSED TO SIMULATED ACID RAIN AND GASEOUS AIR POLLUTANTS. New Phytologist, 1983, 95, 277-287.	3.5	20
200	The role of stomata in sensitivity of Betula papyrifera seedlings to SO2 at different humidities. Oecologia, 1982, 53, 34-39.	0.9	37
201	Interactions of SO2-concentration and post-fumigation temperature on growth of five species of woody plants. Environmental Pollution Series A, Ecological and Biological, 1981, 25, 27-39.	0.8	24
202	Relative sensitivity of three species of woody plants to SO2 at high or low exposure temperature. Oecologia, 1981, 51, 33-36.	0.9	40
203	Allelopathic potential of ground cover species onPinus resinosa seedlings. Plant and Soil, 1980, 57, 363-374.	1.8	35
204	CO2 Enhancement of Forest Productivity Constrained by Limited Nitrogen Availability. Nature Precedings, 0, , .	0.1	9
205	Forest Trees and Their Response to Atmospheric Carbon Dioxide Enrichment: A Compilation of Results. ASA Special Publication, 0, , 79-100.	0.8	10