List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2509039/publications.pdf Version: 2024-02-01

DENNIS E KVIE

#	Article	IF	CITATIONS
1	Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature, 1990, 345, 255-258.	27.8	563
2	Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science, 1987, 238, 1283-1285.	12.6	519
3	Malaria: progress, perils, and prospects for eradication. Journal of Clinical Investigation, 2008, 118, 1266-1276.	8.2	516
4	Evidence for the shikimate pathway in apicomplexan parasites. Nature, 1998, 393, 801-805.	27.8	436
5	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
6	Clinical Studies of Atovaquone, Alone or in Combination with other Antimalarial Drugs, for Treatment of Acute Uncomplicated Malaria in Thailand. American Journal of Tropical Medicine and Hygiene, 1996, 54, 62-66.	1.4	345
7	Cardiac effects of antimalarial treatment with halofantrine. Lancet, The, 1993, 341, 1054-1056.	13.7	276
8	Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Molecular and Biochemical Parasitology, 1993, 57, 151-160.	1.1	263
9	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
10	Genetic Diversity ofPlasmodium falciparumHistidineâ€Rich Protein 2 (PfHRP2) and Its Effect on the Performance of PfHRP2â€Based Rapid Diagnostic Tests. Journal of Infectious Diseases, 2005, 192, 870-877.	4.0	240
11	Reversal of Chloroquine Resistance in Malaria Parasite <i>Plasmodium falciparum</i> by Desipramine. Science, 1988, 242, 1301-1303.	12.6	236
12	Artemisone—A Highly Active Antimalarial Drug of the Artemisinin Class. Angewandte Chemie - International Edition, 2006, 45, 2082-2088.	13.8	222
13	(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of <i>Plasmodium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5455-62.	7.1	199
14	Artemisininâ€Induced Dormancy in <i>Plasmodium falciparum</i> : Duration, Recovery Rates, and Implications in Treatment Failure. Journal of Infectious Diseases, 2010, 202, 1362-1368.	4.0	195
15	Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of Apicomplexan Fab I. International Journal for Parasitology, 2001, 31, 109-113.	3.1	190
16	Quinolone-3-Diarylethers: A New Class of Antimalarial Drug. Science Translational Medicine, 2013, 5, 177ra37.	12.4	187
17	Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12689-12694.	7.1	169
18	Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Lancet, The, 1996, 348, 701-707.	13.7	167

#	Article	IF	CITATIONS
19	Randomised trial of artesunate and mefloquine alone and in sequence for acute uncomplicated falciparum malaria. Lancet, The, 1992, 339, 821-824.	13.7	155
20	Antimalarial Peptides from Marine Cyanobacteria: Isolation and Structural Elucidation of Gallinamide A. Journal of Natural Products, 2009, 72, 14-17.	3.0	147
21	The Shikimate Pathway and Its Branches in Apicomplexan Parasites. Journal of Infectious Diseases, 2002, 185, S25-S36.	4.0	139
22	A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nature Communications, 2018, 9, 1837.	12.8	136
23	Oxindole-Based Compounds Are Selective Inhibitors of Plasmodium falciparum Cyclin Dependent Protein Kinases. Journal of Medicinal Chemistry, 2003, 46, 3877-3882.	6.4	126
24	Cholic Acid Derivatives as 1,2,4,5-Tetraoxane Carriers:  Structure and Antimalarial and Antiproliferative Activity. Journal of Medicinal Chemistry, 2000, 43, 3274-3282.	6.4	113
25	Mefloquine Pharmacokinetic-Pharmacodynamic Models: Implications for Dosing and Resistance. Antimicrobial Agents and Chemotherapy, 2000, 44, 3414-3424.	3.2	112
26	Clinical features cannot predict a diagnosis of malaria or differentiate the infecting species in children living in an area of low transmission. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1998, 92, 45-49.	1.8	110
27	Role of <i>pfmdr1</i> Amplification and Expression in Induction of Resistance to Artemisinin Derivatives in <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 2455-2464.	3.2	108
28	Structure-activity relationships of analogs of pentamidine against Plasmodium falciparum and Leishmania mexicana amazonensis. Antimicrobial Agents and Chemotherapy, 1990, 34, 1381-1386.	3.2	104
29	pfcrt Allelic Types with Two Novel Amino Acid Mutations in Chloroquine-Resistant Plasmodium falciparum Isolates from the Philippines. Antimicrobial Agents and Chemotherapy, 2003, 47, 3500-3505.	3.2	101
30	Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine–pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Tropica, 2005, 95, 183-193.	2.0	101
31	Almiramides Aâ^'C: Discovery and Development of a New Class of Leishmaniasis Lead Compounds. Journal of Medicinal Chemistry, 2010, 53, 4187-4197.	6.4	99
32	Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .	12.6	99
33	Artemisinin-Resistant Plasmodium falciparum Parasites Exhibit Altered Patterns of Development in Infected Erythrocytes. Antimicrobial Agents and Chemotherapy, 2015, 59, 3156-3167.	3.2	97
34	Protozoan persister-like cells and drug treatment failure. Nature Reviews Microbiology, 2019, 17, 607-620.	28.6	97
35	Leishmania spp.: Development of pentostam-resistant clones in vitro by discontinuous drug exposure. Experimental Parasitology, 1989, 69, 78-90.	1.2	94
36	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94

#	Article	IF	CITATIONS
37	Endochin Optimization: Structureâ`'Activity and Structureâ`'Property Relationship Studies of 3-Substituted 2-Methyl-4(1 <i>H</i>)-quinolones with Antimalarial Activity. Journal of Medicinal Chemistry, 2010, 53, 7076-7094.	6.4	92
38	Dragonamide E, a Modified Linear Lipopeptide from <i>Lyngbya majuscula</i> with Antileishmanial Activity. Journal of Natural Products, 2010, 73, 60-66.	3.0	92
39	New Class of Small Nonpeptidyl Compounds Blocks Plasmodium falciparum Development In Vitro by Inhibiting Plasmepsins. Antimicrobial Agents and Chemotherapy, 2001, 45, 2577-2584.	3.2	90
40	Epigenetic Tailoring for the Production of Anti-Infective Cytosporones from the Marine Fungus Leucostoma persoonii. Marine Drugs, 2012, 10, 762-774.	4.6	89
41	Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. International Journal for Parasitology, 2004, 34, 297-308.	3.1	86
42	Synthesis and Antimalarial Activity of Sixteen Dispiro-1,2,4,5-tetraoxanes:  Alkyl-Substituted 7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadecanes. Journal of Medicinal Chemistry, 2000, 43, 2753-2758.	6.4	83
43	Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay. British Journal of Clinical Pharmacology, 1996, 42, 599-604.	2.4	79
44	Antimalarial Drugs Reduce Cytoadherence and Rosetting of Plasmodium falciparum. Journal of Infectious Diseases, 1996, 173, 691-698.	4.0	78
45	Artemisinin-induced parasite dormancy: a plausible mechanism for treatment failure. Malaria Journal, 2011, 10, 56.	2.3	78
46	Phenotypic and Genotypic Analysis of <i>In Vitro</i> -Selected Artemisinin-Resistant Progeny of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2012, 56, 302-314.	3.2	74
47	Clinical Study of Pyronaridine for the Treatment of Acute Uncomplicated Falciparum Malaria in Thailand. American Journal of Tropical Medicine and Hygiene, 1996, 54, 205-209.	1.4	74
48	Development and validation of flow cytometric measurement for parasitemia in cultures ofP. falciparum vitally stained with YOYO-1. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 297-307.	1.5	72
49	Lead Optimization of 3-Carboxyl-4(1 <i>H</i>)-Quinolones to Deliver Orally Bioavailable Antimalarials. Journal of Medicinal Chemistry, 2012, 55, 4205-4219.	6.4	71
50	Arteether: Risks of Two-Week Administration in Macaca mulatta. American Journal of Tropical Medicine and Hygiene, 1997, 56, 390-396.	1.4	70
51	Angiogenesis inhibitors specific for methionine aminopeptidase 2 as drugs for Malaria and Leishmaniasis. Journal of Biomedical Science, 2002, 9, 34-40.	7.0	69
52	Artemisinin resistance in Plasmodium falciparum: A process linked to dormancy?. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 249-255.	3.4	69
53	Bastimolide A, a Potent Antimalarial Polyhydroxy Macrolide from the Marine Cyanobacterium <i>Okeania hirsuta</i> . Journal of Organic Chemistry, 2015, 80, 7849-7855.	3.2	68
54	A study of the factors affecting the metabolic clearance of quinine in malaria. European Journal of Clinical Pharmacology, 1997, 52, 487-493.	1.9	66

#	Article	IF	CITATIONS
55	Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria American Journal of Tropical Medicine and Hygiene, 2001, 65, 717-721.	1.4	66
56	Lengthy Antimalarial Activity of Atovaquone in Human Plasma following Atovaquone-Proguanil Administration. Antimicrobial Agents and Chemotherapy, 2005, 49, 4421-4422.	3.2	63
57	Phenotypic Changes in Artemisinin-Resistant Plasmodium falciparum Lines <i>In Vitro</i> : Evidence for Decreased Sensitivity to Dormancy and Growth Inhibition. Antimicrobial Agents and Chemotherapy, 2012, 56, 428-431.	3.2	63
58	Plasmodium falciparum: modulation by calcium antagonists of resistance to chloroquine, desethylchloroquine, quinine, and quinidine in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1990, 84, 474-478.	1.8	62
59	Novel Arylimidamides for Treatment of Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2010, 54, 2507-2516.	3.2	62
60	Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2014, 58, 4773-4781.	3.2	62
61	Methyl-Substituted Dispiro-1,2,4,5-tetraoxanes:Â Correlations of Structural Studies with Antimalarial Activity. Journal of Medicinal Chemistry, 2000, 43, 1246-1249.	6.4	61
62	Plasmodium falciparum:Evaluation of Lactate Dehydrogenase in Monitoring Therapeutic Responses to Standard Antimalarial Drugs in Nigeria. Experimental Parasitology, 1997, 87, 283-289.	1.2	59
63	Antileishmanial Activity of a Series of <i>N</i> ² , <i>N</i> ⁴ -Disubstituted Quinazoline-2,4-diamines. Journal of Medicinal Chemistry, 2014, 57, 5141-5156.	6.4	59
64	Effects of Artesunate on Parasite Recrudescence and Dormancy in the Rodent Malaria Model Plasmodium vinckei. PLoS ONE, 2011, 6, e26689.	2.5	59
65	In vitro and in vivo reversal of chloroquine resistance in Plasmodium falciparum with promethazine American Journal of Tropical Medicine and Hygiene, 1998, 58, 625-629.	1.4	59
66	Screening Mangrove Endophytic Fungi for Antimalarial Natural Products. Marine Drugs, 2013, 11, 5036-5050.	4.6	58
67	Neurotoxicity and efficacy of arteether related to its exposure times and exposure levels in rodents American Journal of Tropical Medicine and Hygiene, 2002, 66, 516-525.	1.4	58
68	Antimalarial Activity of New Dihydroartemisinin Derivatives. 7. 4-(p-Substituted phenyl)-4(RorS)-[10(α or) Tj E	ГQq0,0,0 rg 6.4	BT /Overlock 1
69	Seasonal Distribution of Thermotolerant Free-Living Amoebae. I. Willard's Pond1. Journal of Protozoology, 1986, 33, 422-434.	0.8	56
70	Coibacins A–D, Antileishmanial Marine Cyanobacterial Polyketides with Intriguing Biosynthetic Origins. Organic Letters, 2012, 14, 3878-3881.	4.6	56
71	Shagenes A and B, New Tricyclic Sesquiterpenes Produced by an Undescribed Antarctic Octocoral. Organic Letters, 2014, 16, 2630-2633.	4.6	55
72	WR 238605, Chloroquine, and their Combinations as Blood Schizonticides against a Chloroquine-Resistant Strain of Plasmodium vivax in Aotus Monkeys. American Journal of Tropical	1.4	55

	WR 238605, Unioroquine, and their Combinations as Blood Schizonticides against a
72	Chloroquine-Resistant Strain of Plasmodium vivax in Aotus Monkeys. American Journal of Tropical
	Medicine and Hygiene, 1997, 56, 508-510.

#	Article	IF	CITATIONS
73	Design, Synthesis, and Evaluation of New Chemosensitizers in Multi-Drug-Resistant Plasmodium falciparum. Journal of Medicinal Chemistry, 2002, 45, 2741-2748.	6.4	54
74	World Antimalarial Resistance Network (WARN) II: In vitro antimalarial drug susceptibility. Malaria Journal, 2007, 6, 120.	2.3	54
75	Norselic Acids Aâ^'E, Highly Oxidized Anti-infective Steroids that Deter Mesograzer Predation, from the Antarctic Sponge <i>Crella</i> sp Journal of Natural Products, 2009, 72, 1842-1846.	3.0	54
76	Optimization of 1,2,3,4-Tetrahydroacridin-9(10 <i>H</i>)-ones as Antimalarials Utilizing Structure–Activity and Structure–Property Relationships. Journal of Medicinal Chemistry, 2011, 54, 4399-4426.	6.4	54
77	Synthesis, Antimalarial Activity, and Structure–Activity Relationship of 7-(2-Phenoxyethoxy)-4(1 <i>H</i>)-quinolones. Journal of Medicinal Chemistry, 2011, 54, 8321-8327.	6.4	54
78	Radical curative efficacy of tafenoquine combination regimens in Plasmodium cynomolgi-infected Rhesus monkeys (Macaca mulatta). Malaria Journal, 2011, 10, 212.	2.3	54
79	A 3D QSAR Pharmacophore Model and Quantum Chemical Structureâ^Activity Analysis of Chloroquine(CQ)-Resistance Reversal. Journal of Chemical Information and Computer Sciences, 2002, 42, 1212-1220.	2.8	52
80	Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase of isolates from the Amazon Region of Brazil. Memorias Do Instituto Oswaldo Cruz, 2000, 95, 721-728.	1.6	50
81	Point mutations in thepfcrtandpfmdr-1genes ofPlasmodium falciparumand clinical response to chloroquine, among malaria patients from Nigeria. Annals of Tropical Medicine and Parasitology, 2003, 97, 439-451.	1.6	49
82	Reversal of mefloquine resistance with penfluridol in isolates of Plasmodium falciparum from south-west Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1993, 87, 81-83.	1.8	48
83	Qualitative And Semiquantitative Polymerase Chain Reaction To Predict Plasmodium falciparum Treatment Failure. Journal of Infectious Diseases, 1994, 170, 1626-1630.	4.0	48
84	Syntheses and Antimalarial Activities of 10-Substituted Deoxoartemisinins. Journal of Medicinal Chemistry, 2000, 43, 4228-4232.	6.4	48
85	Arteether-induced brain injury in Macaca mulatta . I. The precerebellar nuclei: the lateral reticular nuclei, paramedian reticular nuclei, and perihypoglossal nuclei. Anatomy and Embryology, 2000, 201, 383-397.	1.5	48
86	Treatment of Patients with Recrudescent Falciparum Malaria with a Sequential Combination of Artesunate and Mefloquine. American Journal of Tropical Medicine and Hygiene, 1992, 47, 794-799.	1.4	48
87	Reversal of Plasmodium falciparum Resistance to Chloroquine in Panamanian Aotus Monkeys. American Journal of Tropical Medicine and Hygiene, 1993, 48, 126-133.	1.4	48
88	Long-Term Malaria Chemoprophylaxis with Meftoquine in Dutch Marines in Cambodia. Journal of Infectious Diseases, 1996, 173, 1506-1509.	4.0	47
89	Syntheses and Bioactivities of Substituted 9,10-Dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrones. Unusual Reactivities with Amines. Journal of Organic Chemistry, 2002, 67, 2907-2912.	3.2	47
90	Plasmodium vivax: Isotopic, PicoGreen, and microscopic assays for measuring chloroquine sensitivity in fresh and cryopreserved isolates. Experimental Parasitology, 2006, 114, 34-39.	1.2	47

#	Article	IF	CITATIONS
91	Vertical Distribution of Potentially Pathogenic Free-Living Amoebae in Freshwater Lakes1. Journal of Protozoology, 1985, 32, 99-105.	0.8	46
92	Synthesis and Antimalarial Activity of New Isotebuquine Analogues. Journal of Medicinal Chemistry, 2007, 50, 889-896.	6.4	46
93	Bis-Benzimidazole Hits against Naegleria fowleri Discovered with New High-Throughput Screens. Antimicrobial Agents and Chemotherapy, 2015, 59, 2037-2044.	3.2	46
94	Serial analysis of gene expression (SAGE) in Plasmodium falciparum: application of the technique to A–T rich genomes. Molecular and Biochemical Parasitology, 2001, 113, 23-34.	1.1	45
95	Current Treatment and Drug Discovery Against Leishmania spp. and Plasmodium spp.: A Review. Current Drug Targets, 2009, 10, 178-192.	2.1	42
96	Randomized Trial of Mefloquine-Doxycycline, and Artesunate-Doxycycline for Treatment of Acute Uncomplicated Falciparum Malaria. American Journal of Tropical Medicine and Hygiene, 1994, 50, 784-789.	1.4	41
97	Origin and Dissemination of Chloroquine-Resistant Plasmodium falciparum with Mutant pfcrt Alleles in the Philippines. Antimicrobial Agents and Chemotherapy, 2005, 49, 2102-2105.	3.2	40
98	Characteristics of Multidrug Resistance in Plasmodium and Leishmania: Detection of P-Glycoprotein-Like Components. American Journal of Tropical Medicine and Hygiene, 1991, 45, 98-111.	1.4	40
99	Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nature Communications, 2019, 10, 3635.	12.8	39
100	Antimalarial and antiproliferative evaluation of Bis-Steroidal tetraoxanes. Bioorganic and Medicinal Chemistry, 2003, 11, 2761-2768.	3.0	38
101	Synthesis and In Vitro Studies of Novel Pyrimidinyl Peptidomimetics as Potential Antimalarial Therapeutic Agents. Journal of Medicinal Chemistry, 2002, 45, 3491-3496.	6.4	37
102	Convenient Access Both to Highly Antimalaria-Active 10-Arylaminoartemisinins, and to 10-Alkyl Ethers Including Artemether, Arteether, and Artelinate. ChemBioChem, 2005, 6, 659-667.	2.6	36
103	Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. PLoS Neglected Tropical Diseases, 2020, 14, e0008353.	3.0	36
104	Synthesis and antimalarial activities of base-catalyzed adducts of 11-azaartemisinin. Bioorganic and Medicinal Chemistry, 2000, 8, 1111-1116.	3.0	35
105	Pharmacokinetics, efficacy and toxicity of parenteral halofantrine in uncomplicated malaria. British Journal of Clinical Pharmacology, 1993, 36, 585-591.	2.4	34
106	Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery. Scientific Reports, 2015, 5, 15930.	3.3	34
107	Phenotypic Screens Reveal Posaconazole as a Rapidly Acting Amebicidal Combination Partner for Treatment of Primary Amoebic Meningoencephalitis. Journal of Infectious Diseases, 2019, 219, 1095-1103.	4.0	34
108	Discovery of Anti-Amoebic Inhibitors from Screening the MMV Pandemic Response Box on Balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba castellanii. Pathogens, 2020, 9, 476.	2.8	34

#	Article	IF	CITATIONS
109	Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. Cell Chemical Biology, 2020, 27, 719-727.e5.	5.2	34
110	Randomised trial of mefloquine-tetracycline and quinine-tetracycline for acute uncomplicated falciparum malaria. Acta Tropica, 1994, 57, 47-53.	2.0	32
111	Orally Bioavailable 6-Chloro-7-methoxy-4(1 <i>H</i>)-quinolones Efficacious against Multiple Stages of <i>Plasmodium</i> . Journal of Medicinal Chemistry, 2014, 57, 8860-8879.	6.4	32
112	RANDOMIZED, CONTROLLED, DOUBLE-BLIND TRIAL OF DAILY ORAL AZITHROMYCIN IN ADULTS FOR THE PROPHYLAXIS OF PLASMODIUM VIVAX MALARIA IN WESTERN THAILAND. American Journal of Tropical Medicine and Hygiene, 2005, 73, 842-849.	1.4	32
113	Seasonal Distribution of Thermotolerant Free-Living Amoebae. II. Lake Issaqueena1. Journal of Protozoology, 1987, 34, 10-15.	0.8	31
114	Fluoxetine hydrochloride enhances in vitro susceptibility to chloroquine in resistant Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 1992, 36, 2761-2765.	3.2	31
115	Plasmodium falciparum: The Effects of Atovaquone Resistance on Respiration. Experimental Parasitology, 2001, 98, 180-187.	1.2	31
116	CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorganic and Medicinal Chemistry, 2011, 19, 5756-5762.	3.0	31
117	Development and validation of flow cytometric measurement for parasitaemia using autofluorescence and YOYO-1 in rodent malaria. Parasitology, 2007, 134, 1151-1162.	1.5	30
118	Deamplification of pfmdr1 -Containing Amplicon on Chromosome 5 in Plasmodium falciparum Is Associated with Reduced Resistance to Artelinic Acid In Vitro. Antimicrobial Agents and Chemotherapy, 2010, 54, 3395-3401.	3.2	30
119	Novel 4-Aminoquinoline Analogs Highly Active against the Blood and Sexual Stages of Plasmodium <i>In Vivo</i> and <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 4685-4692.	3.2	30
120	Open Randomized Trial of Oral Artemether Alone and a Sequential Combination with Mefloquine for Acute Uncomplicated Falciparum Malaria. American Journal of Tropical Medicine and Hygiene, 1997, 56, 613-617.	1.4	30
121	Relationship between Chloroquine Toxicity and Iron Acquisition in Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy, 2002, 46, 787-796.	3.2	28
122	Design and Synthesis of Orally Bioavailable Piperazine Substituted 4(1 <i>H</i>)-Quinolones with Potent Antimalarial Activity: Structure–Activity and Structure–Property Relationship Studies. Journal of Medicinal Chemistry, 2018, 61, 1450-1473.	6.4	28
123	Acid catalyzed michael additions to artemisitene. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1601-1603.	2.2	27
124	Structural Analysis of Chloroquine Resistance Reversal by Imipramine Analogs. Antimicrobial Agents and Chemotherapy, 2001, 45, 2655-2657.	3.2	27
125	Strict tropism for CD71+/CD234+ human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi. Blood, 2017, 130, 1357-1363.	1.4	27
126	Efficacy of Proton Pump Inhibitor Drugs against Plasmodium falciparum In Vitro and Their Probable Pharmacophores. Antimicrobial Agents and Chemotherapy, 2002, 46, 2627-2632.	3.2	26

#	Article	IF	CITATIONS
127	Fitness of artemisinin-resistant <i>Plasmodium falciparum in vitro</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 2787-2796.	3.0	26
128	Technical Assessment of the Affymetrix Yeast Expression GeneChip YE6100 Platform in a Heterologous Model of Genes That Confer Resistance to Antimalarial Drugs in Yeast. Journal of Clinical Microbiology, 2000, 38, 1901-1908.	3.9	26
129	Chloroquine resistant Plasmodium falciparum in indigenous residents of Cameroon. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1989, 83, 308-310.	1.8	25
130	Plasmodium falciparum -Based Bioassay for Measurement of Artemisinin Derivatives in Plasma or Serum. Antimicrobial Agents and Chemotherapy, 2004, 48, 954-960.	3.2	25
131	Leishmanicidal activity of a daucane sesquiterpene isolated from <i>Eryngium foetidum</i> . Pharmaceutical Biology, 2014, 52, 398-401.	2.9	25
132	Drug Susceptibility and Genetic Evaluation of Plasmodium falciparum Isolates Obtained in Four Distinct Geographical Regions of Kenya. Antimicrobial Agents and Chemotherapy, 2004, 48, 3598-3601.	3.2	24
133	Evaluation of Artemisone Combinations in <i>Aotus</i> Monkeys Infected with <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 3592-3594.	3.2	24
134	4(1 <i>H</i>)-Quinolones with Liver Stage Activity against Plasmodium berghei. Antimicrobial Agents and Chemotherapy, 2013, 57, 417-424.	3.2	24
135	Ultrastructural Study of the Effects of Chloroquine and Verapamil on Plasmodium Falciparum. American Journal of Tropical Medicine and Hygiene, 1988, 39, 15-20.	1.4	23
136	Failure To Detect A Plasmodium vivax-Like Malaria Parasite In Globally Collected Blood Samples. Journal of Infectious Diseases, 1994, 170, 1630-1633.	4.0	22
137	Pharmacokinetics of quinine and 3-hydroxyquinine in severe falciparum malaria with acute renal failure. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1999, 93, 69-72.	1.8	22
138	Unambiguous Synthesis and Prophylactic Antimalarial Activities of Imidazolidinedione Derivatives. Journal of Medicinal Chemistry, 2005, 48, 6472-6481.	6.4	22
139	Malaria Causal Prophylactic Activity of Imidazolidinedione Derivatives. Journal of Medicinal Chemistry, 2007, 50, 6226-6231.	6.4	22
140	Spongian Diterpenoids Derived from the Antarctic Sponge Dendrilla antarctica Are Potent Inhibitors of the Leishmania Parasite. Journal of Natural Products, 2020, 83, 1553-1562.	3.0	22
141	Confirmation of emergence of mutations associated with atovaquone-proguanil resistance in unexposed Plasmodium falciparum isolates from Africa. Malaria Journal, 2006, 5, 82.	2.3	21
142	Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Marine Drugs, 2018, 16, 376.	4.6	21
143	4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities. Current Topics in Medicinal Chemistry, 2014, 14, 1693-1705.	2.1	21
144	Efficacy of Scopadulcic Acid A againstPlasmodium falciparumin Vitro. Journal of Natural Products, 2002, 65, 614-615.	3.0	20

#	Article	IF	CITATIONS
145	First evidence of polychaete intermediate hosts for Neospirorchis spp. marine turtle blood flukes (Trematoda: Spirorchiidae). International Journal for Parasitology, 2018, 48, 1097-1106.	3.1	20
146	Efficacy comparison of intravenous artelinate and artesunate in Plasmodium berghei-infected Sprague-Dawley rats. Parasitology, 2003, 126, 283-291.	1.5	19
147	4-(1 <i>H</i>)-Quinolones and 1,2,3,4-Tetrahydroacridin-9(10 <i>H</i>)-Ones Prevent the Transmission of Plasmodium falciparum to Anopheles freeborni. Antimicrobial Agents and Chemotherapy, 2013, 57, 6187-6195.	3.2	18
148	ICI 56,780 Optimization: Structure–Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1 <i>H</i>)-quinolones with Antimalarial Activity. Journal of Medicinal Chemistry, 2016, 59, 6943-6960.	6.4	18
149	Spirocyclic chromanes exhibit antiplasmodial activities and inhibit all intraerythrocytic life cycle stages. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 85-92.	3.4	18
150	A Nonhuman Primate Model for Human Cerebral Malaria: Effects of Artesunate (Qinghaosu Derivative) on Rhesus Monkeys Experimentally Infected with Plasmodium coatneyi. American Journal of Tropical Medicine and Hygiene, 1993, 49, 726-734.	1.4	18
151	Phase I Trial of the SPf66 Malaria Vaccine in a Malaria-Experienced Population in Southeast Asia *. American Journal of Tropical Medicine and Hygiene, 1997, 56, 526-532.	1.4	18
152	Structure and antimalarial activity of adducts of 11-azaartemisinin with conjugated terminal acetylenes. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2969-2972.	2.2	17
153	Microphysical space of a liver sinusoid device enables simplified long-term maintenance of chimeric mouse-expanded human hepatocytes. Biomedical Microdevices, 2014, 16, 727-736.	2.8	17
154	Keikipukalides, Furanocembrane Diterpenes from the Antarctic Deep Sea Octocoral Plumarella delicatissima. Journal of Natural Products, 2018, 81, 117-123.	3.0	17
155	Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Scientific Reports, 2021, 11, 19905.	3.3	17
156	SPf66 malaria vaccine is safe and immunogenic in malaria naive adults in Thailand. Acta Tropica, 1997, 67, 215-227.	2.0	16
157	Optimal 10-Aminoartemisinins With Potent Transmission-Blocking Capabilities for New Artemisinin Combination Therapies–Activities Against Blood Stage P. falciparum Including PfKI3 C580Y Mutants and Liver Stage P. berghei Parasites. Frontiers in Chemistry, 2019, 7, 901.	3.6	16
158	Randomized, controlled, double-blind trial of daily oral azithromycin in adults for the prophylaxis of Plasmodium vivax malaria in Western Thailand. American Journal of Tropical Medicine and Hygiene, 2005, 73, 842-9.	1.4	16
159	Blood flukes Cardicola parvus and C. laruei (Trematoda: Aporocotylidae): life cycles and cryptic infection in spotted seatrout, Cynoscion nebulosus (Teleost: Sciaenidae). Parasitology International, 2018, 67, 150-158.	1.3	15
160	Phytohormones, Isoprenoids, and Role of the Apicoplast in Recovery from Dihydroartemisinin-Induced Dormancy of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	15
161	Bioactivity of Spongian Diterpenoid Scaffolds from the Antarctic Sponge Dendrilla antarctica. Marine Drugs, 2020, 18, 327.	4.6	15
162	An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. Lab on A Chip, 2020, 20, 1124-1139.	6.0	15

#	Article	IF	CITATIONS
163	Flow cytometric immunophenotyping of lymphocyte subsets in samples that contain a high proportion of non-lymphoid cells. Cytometry, 1994, 18, 199-208.	1.8	14
164	Real-Time PCR to Quantify <i>Leishmania donovani</i> in Hamsters. Journal of Parasitology, 2013, 99, 145-150.	0.7	14
165	Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine. PLoS ONE, 2009, 4, e6762.	2.5	14
166	Linkage disequilibrium between two distinct loci in chromosomes 5 and 7 of Plasmodium falciparum and in vivo chloroquine resistance in Southwest Nigeria. Parasitology Research, 2006, 100, 141-148.	1.6	13
167	Antimalarial pharmacodynamics and pharmacokinetics of a third-generation antifolate JPC2056 in cynomolgus monkeys using an in vivo in vitro model. Journal of Antimicrobial Chemotherapy, 2007, 60, 811-818.	3.0	12
168	Lead Optimization of Antimalarial Propafenone Analogues. Journal of Medicinal Chemistry, 2012, 55, 6087-6093.	6.4	12
169	Naegleria fowleri: Protein structures to facilitate drug discovery for the deadly, pathogenic free-living amoeba. PLoS ONE, 2021, 16, e0241738.	2.5	12
170	Menoctone Resistance in Malaria Parasites Is Conferred by M133I Mutations in Cytochrome b That Are Transmissible through Mosquitoes. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	12
171	Physical Linkage to Drug Resistance Genes Results in Conservation ofvarGenes among West PacificPlasmodium falciparumIsolates. Journal of Infectious Diseases, 2006, 194, 939-948.	4.0	11
172	Evidence for Pyronaridine as a Highly Effective Partner Drug for Treatment of Artemisinin-Resistant Malaria in a Rodent Model. Antimicrobial Agents and Chemotherapy, 2014, 58, 183-195.	3.2	11
173	Regulation of Leukocyte Adhesion Molecules CD11b/CD18 and Leukocyte Adhesion Molecule-1 on Phagocytic Cells Activated by Malaria Pigment. American Journal of Tropical Medicine and Hygiene, 1997, 57, 383-388.	1.4	11
174	Shikimate pathway in apicomplexan parasites. Nature, 1999, 397, 220-220.	27.8	10
175	The Presence of Leukocytes in <i>Ex Vivo</i> Assays Significantly Increases the 50-Percent Inhibitory Concentrations of Artesunate and Chloroquine against <i>Plasmodium vivax</i> and <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1300-1304.	3.2	10
176	Pyronaridine. Lancet, The, 1996, 347, 1189-1190.	13.7	9
177	Synthesis and Activity of a New Series of Antileishmanial Agents. ACS Medicinal Chemistry Letters, 2017, 8, 797-801.	2.8	9
178	<i>In Vitro</i> Screening of the Open-Source Medicines for Malaria Venture Malaria and Pathogen Boxes To Discover Novel Compounds with Activity against Balamuthia mandrillaris. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	9
179	Aminoalkoxycarbonyloxymethyl Ether Prodrugs with a pH-Triggered Release Mechanism: A Case Study Improving the Solubility, Bioavailability, and Efficacy of Antimalarial 4(1 <i>H</i>)-Quinolones with Single Dose Cures. Journal of Medicinal Chemistry, 2021, 64, 6581-6595.	6.4	8
180	Characterization of the Tubovesicular Network in Plasmodium vivax Liver Stage Hypnozoites and Schizonts. Frontiers in Cellular and Infection Microbiology, 2021, 11, 687019.	3.9	8

#	Article	IF	CITATIONS
181	EdU Incorporation To Assess Cell Proliferation and Drug Susceptibility in Naegleria fowleri. Antimicrobial Agents and Chemotherapy, 2021, 65, e0001721.	3.2	8
182	A potent antimalarial trichothecene from hyphomycete species. Tetrahedron Letters, 2014, 55, 3989-3991.	1.4	7
183	Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	7
184	The transcriptome of Balamuthia mandrillaris trophozoites for structure-guided drug design. Scientific Reports, 2021, 11, 21664.	3.3	7
185	Diagnostic Characteristics of Lactate Dehydrogenase on a Multiplex Assay for Malaria Detection Including the Zoonotic Parasite Plasmodium knowlesi. American Journal of Tropical Medicine and Hygiene, 2022, 106, 275-282.	1.4	7
186	Occurrence of Metacercariae (Trematoda: Gymnophallidae) on Amphitrite ornata (Annelida:) Tj ETQq0 0 0 rgBT /C	verlock 10 0.7	0 Tf 50 542
187	Adaptation of a Thai Multidrug-Resistant C2A Clone of Plasmodium falciparum to Aotus Monkeys and Its Preliminary in vivo Antimalarial Drug Efficacy-Resistance Profile. American Journal of Tropical Medicine and Hygiene, 2009, 81, 587-594.	1.4	6
188	Miniaturized Cultivation of Microbiota for Antimalarial Drug Discovery. Medicinal Research Reviews, 2016, 36, 144-168.	10.5	6
189	Synthesis, characterization, and cellular localization of a fluorescent probe of the antimalarial 8-aminoquinoline primaquine. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4597-4600.	2.2	6
190	Alkyne modified purines for assessment of activation of Plasmodium vivax hypnozoites and growth of pre-erythrocytic and erythrocytic stages in Plasmodium spp. International Journal for Parasitology, 2022, , .	3.1	6
191	Identification of a Hit Series of Antileishmanial Compounds through the Use of Mixture-Based Libraries. ACS Medicinal Chemistry Letters, 2017, 8, 802-807.	2.8	5
192	Synthesis of Mono- and Bisperoxide-Bridged Artemisinin Dimers to Elucidate the Contribution of Dimerization to Antimalarial Activity. ACS Infectious Diseases, 2021, 7, 2013-2024.	3.8	5
193	Disposition of Proguanil in Thai Patients with Uncomplicated Falciparum Malaria. American Journal of Tropical Medicine and Hygiene, 1997, 56, 498-502.	1.4	5
194	Differential Growth Rates and <i>In Vitro</i> Drug Susceptibility to Currently Used Drugs for Multiple Isolates of Naegleria fowleri. Microbiology Spectrum, 2022, 10, e0189921.	3.0	5
195	Cover Picture: Artemisone—A Highly Active Antimalarial Drug of the Artemisinin Class (Angew. Chem.) Tj ETQq1	1,0.78431 13.8	l4rgBT /C∨
196	Reversal of Chloroquine Resistance of Plasmodium vivax in Aotus Monkeys. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	4
197	Dynamics of infection and pathology induced by the aporocotylid, Cardicola laruei, in Spotted Seatrout, Cynoscion nebulosus (Sciaenidae). International Journal for Parasitology, 2020, 50, 809-823. 	3.1	4
198	Multiple drug resistance of Plasmodium falciparum in Liberia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1989, 83, 311-312.	1.8	3

#	Article	IF	CITATIONS
199	The effects of α1-acid glycoprotein on the reversal of chloroquine resistance inPlasmodium falciparum. Annals of Tropical Medicine and Parasitology, 2006, 100, 571-578.	1.6	3
200	Structure-activity and structure-property relationship studies of spirocyclic chromanes with antimalarial activity. Bioorganic and Medicinal Chemistry, 2022, 57, 116629.	3.0	2
201	Polychlorinated cyclopentenes from a marine derived Periconia sp. (strain G1144). Phytochemistry, 2022, 199, 113200.	2.9	2
202	Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model. Scientific Reports, 2016, 6, 21216.	3.3	1
203	Metabolic, Pharmacokinetic, and Activity Profile of the Liver Stage Antimalarial (RC-12). ACS Omega, 2022, 7, 12401-12411.	3.5	1
204	A 3D QSAR Pharmacophore Model and Quantum Chemical Structure—Activity Analysis of Chloroquine(CQ)â€Resistance Reversal ChemInform, 2002, 33, 213-213.	0.0	0
205	Overcoming challenges to discover drugs for liver stages of Plasmodium vivax. Malaria Journal, 2014, 13, .	2.3	0
206	Correction to Antileishmanial Activity of a Series of N2,N4-Disubstituted Quinazoline-2,4-diamines. Journal of Medicinal Chemistry, 2016, 59, 775-775.	6.4	0