List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2508416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excellent thermal stability and energy storage properties of leadâ€free Bi _{0.5} Na _{0.5} TiO ₃ â€based ceramic. Journal of the American Ceramic Society, 2022, 105, 4027-4038.	3.8	23
2	Investigation of PTFE-based ultra-low dielectric constant composite substrates with hollow silica ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 4550-4558.	2.2	4
3	Ferroelectric-Relaxor Crossover and Energy Storage Properties in Sr ₂ NaNb ₅ O ₁₅ Based Tungsten Bronze Ceramics. ACS Applied Materials & Interfaces, 2022, 14, 9318-9329.	8.0	22
4	Enhanced energy storage properties with excellent stability in BST-BLZS relaxor ceramics. Ceramics International, 2022, 48, 19382-19391.	4.8	8
5	Relaxor regulation and improvement of breakdown strength for Bi0.5Na0.5TiO3-based ceramics by co-doping with Ca and Nb. Ceramics International, 2022, 48, 9702-9709.	4.8	5
6	High energy storage properties and dielectric temperature stability of (1-x)(0.8Bi0.5Na0.5TiO3-0.2Ba0.3Sr0.7TiO3)-xNaNbO3 lead-free ceramics. Journal of Alloys and Compounds, 2021, 851, 156821.	5.5	36
7	Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3-based ceramic by reducing the oxygen vacancy concentration. Chemical Engineering Journal, 2021, 414, 128921.	12.7	75
8	Relaxor regulation and improvement of energy storage properties of Sr2NaNb5O15-based tungsten bronze ceramics through B-site substitution. Chemical Engineering Journal, 2021, 421, 127846.	12.7	38
9	Vibrational spectroscopic and crystal chemical analyses of double perovskite Y ₂ MgTiO ₆ microwave dielectric ceramics. Journal of the American Ceramic Society, 2020, 103, 1121-1130.	3.8	37
10	Gd ₂ Zr ₃ (MoO ₄) ₉ microwave dielectric ceramics with trigonal structure for LTCC application. Journal of the American Ceramic Society, 2020, 103, 1131-1139.	3.8	35
11	Crystal structure, relaxor behaviors and energy storage performance of (Sr0.7Ba0.3)5LaNb7Ti3O30 tungsten bronze ceramics. Ceramics International, 2020, 46, 6108-6114.	4.8	19
12	Polytetrafluoroethylene based, F8261 modified realization of Li2SnMg0.5O3.5 filled composites. Applied Surface Science, 2020, 503, 144088.	6.1	14
13	Relaxor Nature and Energy Storage Properties of Sr _{2â€"<i>x</i>} M _{<i>x</i>} NaNb _{5â€"<i>x</i>} Ti _{<i>x</i>} O <sub (M = La³⁺ and Ho³⁺) Tungsten Bronze Ceramics. ACS Sustainable Chemistry and Engineering, 2020, 8, 17527-17539</sub 	>15	32
14	High efficiency and power density relaxor ferroelectric Sr0.875Pb0.125TiO3- Bi(Mg0.5Zr0.5)O3 ceramics for pulsed power capacitors. Journal of the European Ceramic Society, 2020, 40, 2907-2916.	5.7	24
15	Relaxor ferroelectric (Na0.5Bi0.5)0.4Sr0.6TiO3-based ceramics for energy storage application. Ceramics International, 2020, 46, 11282-11289.	4.8	35
16	Excellent thermal stability, high efficiency and high power density of (Sr0.7Ba0.3)5LaNb7Ti3O30–based tungsten bronze ceramics. Journal of the European Ceramic Society, 2020, 40, 2366-2374.	5.7	42
17	Newly developed polytetrafluoroethylene composites based on F8261-modified Li2Mg2.88Ca0.12TiO6 powder. Journal of Alloys and Compounds, 2019, 803, 145-152.	5.5	7
18	Synthesis and characterization of PTFE/(Na Li1-)0.5Nd0.5TiO3 composites with high dielectric constant and high temperature stability for microwave substrate applications. Ceramics International, 2019, 45, 22015-22021.	4.8	24

#	Article	IF	CITATIONS
19	Researches on silane coupling agent treated AlN ceramic powder and fabrication of AlN/PTFE composites for microwave substrate applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 20189-20197.	2.2	9
20	Improved Microwave Dielectric Properties of LiNb0.6Ti0.5O3 Ceramics with Zr Substitutions. Journal of Electronic Materials, 2019, 48, 5080-5087.	2.2	6
21	Modification of Si3N4 ceramic powders and fabrication of Si3N4/PTFE composite substrate with high thermal conductivity. Ceramics International, 2019, 45, 16569-16576.	4.8	53
22	Microstructures and properties of glass fiber reinforced PTFE composite substrates with laminated construction. Materials Research Express, 2019, 6, 075305.	1.6	5
23	Intrinsic dielectric properties of columbite ZnNb ₂ O ₆ ceramics studied by P–V–L bond theory and Infrared spectroscopy. Journal of the American Ceramic Society, 2019, 102, 5365-5374.	3.8	58
24	Stabilizing temperatureâ€capacitance dependence of (Sr, Pb,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Td (Bi)T Journal of the American Ceramic Society, 2019, 102, 4029-4037.	iO _{3 3.8}	â€Bi< 13
25	Crystal Chemistry, Raman Spectra, and Bond Characteristics of Trirutile-Type Co _{0.5} Ti _{0.5} TaO ₄ Microwave Dielectric Ceramics. Inorganic Chemistry, 2019, 58, 968-976.	4.0	88
26	Improvement of dielectric breakdown strength and energy storage performance in Er2O3–modified 0.95Sr0.7Ba0.3Nb2O6-0.05CaTiO3 lead-free ceramics. Ceramics International, 2019, 45, 5660-5667.	4.8	21
27	Microstructure and microwave dielectric properties of Na1/2Sm1/2TiO3 filled PTFE, an environmental friendly composites. Applied Surface Science, 2018, 436, 900-906.	6.1	34
28	Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites. Journal of Electronic Materials, 2018, 47, 633-640.	2.2	18
29	Structure and microwave dielectric properties of the Li _{2/3(1â^'<i>x</i>)} Sn _{1/3(1â^'<i>x</i>)} Mg _{<i>x</i>} O systems (<i>xÂ</i> =Â0â€4/7). Journal of the American Ceramic Society, 2018, 101, 252-264.	3.8	59
30	Effects of (Na1/2Nd1/2)TiO3 on the microstructure and microwave dielectric properties of PTFE/ceramic composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 20680-20687.	2.2	9
31	High discharge efficiency of (Sr, Pb, Bi) TiO3 relaxor ceramics for energy-storage application. Applied Physics Letters, 2018, 112, .	3.3	29
32	Effects of particle size distribution of silica on properties of PTFE/SiO ₂ composites. Materials Research Express, 2018, 5, 066306.	1.6	14
33	Evaluation of surface treatment on Li2Mg3SnO6 ceramic powders and the application of Li2Mg3SnO6 powders filled polytetrafluoroethylene composites. Applied Surface Science, 2018, 456, 637-644.	6.1	17
34	Research on hydrophobicity treatment of aluminum nitride powder and the fabrication and characterization of AlN/PTFE composite substrates. Journal of Materials Science: Materials in Electronics, 2018, 29, 14890-14896.	2.2	6
35	Fabrication of 0.8BaTi4O9-0.2BaZn2Ti4O11 filled and glassfiber reinforced polytetrafluoroethylene composites with near-zero temperature coefficient of dielectric constant. Journal of Alloys and Compounds, 2018, 769, 1034-1041.	5.5	10
36	Structure and microwave dielectric properties of Zn0.9Mg0.1TiO3–Zn0.15Nb0.3Ti0.55O2 ceramics with ZnO–B2O3–SiO2 glass. Journal of Materials Science: Materials in Electronics, 2018, 29, 11901-11909.	2.2	3

#	Article	IF	CITATIONS
37	Preparation, characterization and properties of FEP modified PTFE/glass fiber composites for microwave circuit application. Journal of Materials Science: Materials in Electronics, 2017, 28, 6015-6021.	2.2	8
38	Microwave dielectric properties of (1â€ <i>x</i>)Ba _{3.75} Nd _{9.5} Cr _{0.25} Nb _{0.25} Ti _{17.5ceramics. Journal of the American Ceramic Society, 2017, 100, 4058-4065.}	b> O3.s ub>!	54< ‡s ub>–<
39	Effects of compound coupling agents on the properties of PTFE/SiO2 microwave composites. Journal of Materials Science: Materials in Electronics, 2017, 28, 3356-3363.	2.2	15
40	Effects of perfluorooctyltriethoxysilane coupling agent on the properties of silica filled PTFE composites. Journal of Materials Science: Materials in Electronics, 2017, 28, 8810-8817.	2.2	19
41	A Temperature-Insensitive Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 Microwave Dielectric Ceramic by Bi3+ Substitution. Journal of Electronic Materials, 2017, 46, 1230-1234.	2.2	2
42	The Influence of Sintering Temperature on the Microwave Dielectric Properties of Mg2SiO4 Ceramics with CaO-B2O3-SiO2 Addition. Journal of Electronic Materials, 2017, 46, 1048-1054.	2.2	10
43	Dependence of microwave dielectric properties on site substitution in Ba3.75Nd9.5Ti18O54 ceramic. Journal of Materials Science: Materials in Electronics, 2016, 27, 10951-10957.	2.2	14
44	Effect of sintering temperature on the crystallization behavior and properties of silica filled PTFE composites. Journal of Materials Science: Materials in Electronics, 2016, 27, 13288-13293.	2.2	17
45	Low-temperature sintering and microwave dielectric properties of BaO–0.15ZnO–4TiO2 ceramics with Li2O–B2O3–SiO2 addition. Journal of Materials Science: Materials in Electronics, 2016, 27, 6902-6910.	2.2	6
46	Influence of La–B–Zn glass on the sintering and microwave dielectric properties of Ca–Nd–Ti ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 3164-3169.	2.2	9
47	Effect of Li–B–Si glass on the low temperature sintering behaviors and microwave dielectric properties of the Li-modified ss-phase Li2O–Nb2O5–TiO2 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 3330-3335.	2.2	12
48	Low-Temperature Sintering Behavior and Dielectric Properties of Li2O-Nb2O5-TiO2 Ceramics with Li-B-Si-O Glass. Journal of Electronic Materials, 2015, 44, 4316-4321.	2.2	9
49	Effect of Excess Li Content on the Microwave Dielectric Properties of the M-Phase of Li2O-Nb2O5-TiO2 Ceramics. Journal of Electronic Materials, 2014, 43, 3954-3958.	2.2	11
50	The dielectric and thermal properties of Mn-doped (1Ââ^'Âx) ZrTi2O6–xZnNb2O6 filled PTFE composites. Journal of Materials Science: Materials in Electronics, 2014, 25, 3010-3015.	2.2	6
51	ZrTi2O6 filled PTFE composites for microwave substrate applications. Journal of Polymer Research, 2013, 20, 1.	2.4	36
52	Preparation and properties of low temperature sintered CaO-B2O3-SiO2 microwave dielectric ceramics using the solid-state reaction. Materials Science-Poland, 2013, 31, 404-409.	1.0	9
53	Densification and microwave properties of low-temperature co-fired CaO–B ₂ O ₃ –SiO ₂ glass-ceramic with La–B–Si additions. International Journal of Materials Research, 2013, 104, 606-608.	0.3	0
54	Effects of ZnO and CeO2 additions on the microstructure and dielectric properties of Mn-modified (Bi0.5Na0.5)0.88Ca0.12TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 309-314.	2.2	8

#	Article	IF	CITATIONS
55	Preparation and modification of high Curie point BaTiO3-based X9R ceramics. Journal of Electroceramics, 2010, 25, 93-97.	2.0	34
56	Effects of BiNbO4 on the microstructure and dielectric properties of BaTiO3-based ceramics. Journal of Materials Science: Materials in Electronics, 2009, 20, 157-162.	2.2	19
57	Effects of La occupation site on the dielectric and piezoelectric properties of [Bi0.5(Na0.75K0.15Li0.10)0.5]TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2009, 20, 1090-1094.	2.2	7
58	High-Temperature Capacitor Materials Based on Modified BaTiO3. Journal of Electronic Materials, 2009, 38, 706-710.	2.2	41
59	Investigation on the synthesis of (Zn1â^'xMgx)TiO3 and the modulation effect of CaTiO3. Journal of Materials Science: Materials in Electronics, 2008, 19, 343-347.	2.2	3
60	Synthesis of MgTiO3 by solid state reaction and characteristics with addition. Journal of Materials Science, 2007, 42, 6628-6632.	3.7	38
61	Doping effects of Mn2+ on the dielectric properties of glass-doped BaTiO3-based X8R materials. Journal of Materials Science: Materials in Electronics, 2007, 18, 541-545.	2.2	17
62	A Novel Approach to BaTiO3-based X8R Ceramics by Calcium Borosilicate Glass Ceramic Doping. Journal of Electronic Materials, 2007, 36, 1389-1394.	2.2	19
63	Phase transitions and electrical properties in La3+-substituted Bi0.5(Na0.75K0.15Li0.10)0.5TiO3 ceramics. Journal of Materials Science, 2006, 41, 565-567.	3.7	10
64	Dielectric and piezoelectric properties of (0.97-x) Bi1/2Na1/2TiO3-xBi1/2K1/2TiO3-0.03NaNbO3 ceramics. Journal of Materials Science, 2006, 41, 3561-3567.	3.7	4
65	Preparation of BaTiO3-Based Nonreducible X7R Dielectric Materials Via Nanometer Powders Doping. Journal of Materials Science: Materials in Electronics, 2006, 17, 133-136.	2.2	11
66	The effect of doping process on microstructure and dielectric properties of BaTiO3-based X7R materials. Journal of Materials Science: Materials in Electronics, 2004, 15, 601-606.	2.2	13
67	Synthesis of MgAl2O4Spinel Nanometer Powder via Biology Polysaccharide Assisted Sol-Gel Process. Journal of Sol-Gel Science and Technology, 2004, 30, 223-227.	2.4	12
68	Preparation of BaTiO3-based X7R ceramics with high dielectric constant by nanometer oxides doping method. Materials Letters, 2004, 58, 1959-1963.	2.6	33