Ayaka Shoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2507831/publications.pdf

Version: 2024-02-01

33	2,599	14	32
papers	citations	h-index	g-index
33	33 docs citations	33	3324
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	4.0	456
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
4	Overview of KAGRA: Detector design and construction history. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	198
5	Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	150
6	Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	73
7	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	2.1	73
8	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	66
9	Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Physical Review Letters, 2020, 124, 171101.	7.8	63
10	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 2019, 36, 165008.	4.0	45
11	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
12	Search for a stochastic gravitational-wave background using a pair of torsion-bar antennas. Physical Review D, 2014, 89, .	4.7	23
13	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
14	Ground-based low-frequency gravitational-wave detector with multiple outputs. Physical Review D, 2017, 95, .	4.7	15
15	Cryogenic suspension design for a kilometer-scale gravitational-wave detector. Classical and Quantum Gravity, 2021, 38, 085013.	4.0	15
16	Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope. Classical and Quantum Gravity, 2017, 34, 225001.	4.0	14
17	Torsion-Bar Antenna: A ground-based mid-frequency and low-frequency gravitational wave detector. International Journal of Modern Physics D, 2020, 29, 1940003.	2.1	14
18	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13

#	Article	IF	Citations
19	Seismic cross-coupling noise in torsion pendulums. Physical Review D, 2018, 97, .	4.7	12
20	Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA. Review of Scientific Instruments, 2016, 87, 034501.	1.3	10
21	An arm length stabilization system for KAGRA and future gravitational-wave detectors. Classical and Quantum Gravity, 2020, 37, 035004.	4.0	10
22	Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. Classical and Quantum Gravity, 2019, 36, 095015.	4.0	9
23	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	7
24	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	4.0	7
25	Improving parameter estimation accuracy with torsion-bar antennas. Physical Review D, 2014, 90, .	4.7	5
26	Compact integrated optical sensors and electromagnetic actuators for vibration isolation systems in the gravitational-wave detector KAGRA. Review of Scientific Instruments, 2020, 91, 115001.	1.3	5
27	Active damping performance of the KAGRA seismic attenuation system prototype. Journal of Physics: Conference Series, 2016, 716, 012022.	0.4	3
28	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1 .	2.0	2
29	Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing. Physical Review D, 2022, 105, .	4.7	2
30	Search for a Stochastic Gravitational-wave Background with Torsion-bar Antennas. Journal of Physics: Conference Series, 2012, 363, 012017.	0.4	1
31	Search for a stochastic gravitational wave background at 1–5ÂHz with a torsion-bar antenna. Physical Review D, 2016, 94, .	4.7	1
32	All-sky coherent search for continuous gravitational waves in $6\hat{a}$ \in "7 Hz band with a torsion-bar antenna. Progress of Theoretical and Experimental Physics, 2016, 2016, 011F01.	6.6	1
33	Prospects for frequency comparison of Sr and Hg optical lattice clocks toward 10 ^{−18} uncertainties., 2012,,.		0