David M Pollock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2506285/publications.pdf

Version: 2024-02-01

222 papers 4,989 citations

35 h-index 65 g-index

248 all docs

248 docs citations

times ranked

248

4578 citing authors

#	Article	IF	CITATIONS
1	Endothelin. Pharmacological Reviews, 2016, 68, 357-418.	7.1	574
2	Regulation of Blood Pressure and Salt Homeostasis by Endothelin. Physiological Reviews, 2011, 91, 1-77.	13.1	350
3	Contrasting Actions of Endothelin ETAand ETBReceptors in Cardiovascular Disease. Annual Review of Pharmacology and Toxicology, 2007, 47, 731-759.	4.2	255
4	Endothelin A Receptor Blockade Reduces Diabetic Renal Injury via an Anti-Inflammatory Mechanism. Journal of the American Society of Nephrology: JASN, 2007, 18, 143-154.	3.0	177
5	Evidence for endothelin involvement in the response to high salt. American Journal of Physiology - Renal Physiology, 2001, 281, F144-F150.	1.3	153
6	TNF- \hat{l}_{\pm} inhibition reduces renal injury in DOCA-salt hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R76-R83.	0.9	121
7	Endothelin-1 Increases Glomerular Permeability and Inflammation Independent of Blood Pressure in the Rat. Hypertension, 2010, 56, 942-949.	1.3	112
8	Tumor Necrosis Factor α Blockade Increases Renal Cyp2c23 Expression and Slows the Progression of Renal Damage in Salt-Sensitive Hypertension. Hypertension, 2006, 47, 557-562.	1.3	110
9	Shear stress-mediated NO production in inner medullary collecting duct cells. American Journal of Physiology - Renal Physiology, 2000, 279, F270-F274.	1.3	107
10	Endothelin inhibits thick ascending limb chloride flux via ET _B receptor-mediated NO release. American Journal of Physiology - Renal Physiology, 2000, 279, F326-F333.	1.3	106
11	Renal endothelin in chronic angiotensin II hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R243-R248.	0.9	103
12	Physiology of Endothelin and the Kidney. , 2011, 1, 883-919.		96
13	ETA and ETB receptors differentially modulate afferent and efferent arteriolar responses to endothelin. British Journal of Pharmacology, 2005, 146, 1019-1026.	2.7	89
14	Contribution of Endothelin A Receptors in Endothelin $1\hat{a}\in$ Dependent Natriuresis in Female Rats. Hypertension, 2009, 53, 324-330.	1.3	82
15	Adverse Childhood Experiences Are Associated With Detrimental Hemodynamics and Elevated Circulating Endothelin-1 in Adolescents and Young Adults. Hypertension, 2014, 64, 201-207.	1.3	81
16	Collecting Duct-Derived Endothelin Regulates Arterial Pressure and Na Excretion via Nitric Oxide. Hypertension, 2008, 51, 1605-1610.	1.3	79
17	Endothelin, Angiotensin, and Oxidative Stress in Hypertension. Hypertension, 2005, 45, 477-480.	1.3	77
18	Renal Collecting Duct NOS1 Maintains Fluid–Electrolyte Homeostasis and Blood Pressure. Hypertension, 2013, 62, 91-98.	1.3	75

#	Article	IF	Citations
19	Gender Differences in ET and NOS Systems in ETBReceptor–Deficient Rats. Hypertension, 2003, 41, 657-662.	1.3	67
20	Renal endothelin in hypertension. Current Opinion in Nephrology and Hypertension, 2000, 9, 157-164.	1.0	65
21	Distinct Actions of Endothelin A-Selective Versus Combined Endothelin A/B Receptor Antagonists in Early Diabetic Kidney Disease. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 263-270.	1.3	62
22	Circadian regulation of renal function. Free Radical Biology and Medicine, 2018, 119, 93-107.	1.3	61
23	Endothelin-1 and the kidney. Current Opinion in Nephrology and Hypertension, 2016, 25, 35-41.	1.0	60
24	Endothelin, Kidney Disease, and Hypertension. Hypertension, 2013, 61, 1142-1145.	1.3	52
25	Hypertensive response to chronic NO synthase inhibition is different in Sprague-Dawley rats from two suppliers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1719-R1723.	0.9	50
26	Early Life Stress Enhances Angiotensin Il–Mediated Vasoconstriction by Reduced Endothelial Nitric Oxide Buffering Capacity. Hypertension, 2011, 58, 619-626.	1.3	47
27	Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice. Journal of the American Society of Nephrology: JASN, 2017, 28, 2443-2458.	3.0	47
28	Flow regulation of collecting duct endothelin-1 production. American Journal of Physiology - Renal Physiology, 2011, 300, F650-F656.	1.3	46
29	ETA receptor blockade attenuates the hypertension but not renal dysfunction in DOCA-salt rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R245-R252.	0.9	45
30	High-salt diet blunts renal autoregulation by a reactive oxygen species-dependent mechanism. American Journal of Physiology - Renal Physiology, 2014, 307, F33-F40.	1.3	44
31	Sex Differences in Renal Medullary Endothelin Receptor Function in Angiotensin II Hypertensive Rats. Hypertension, 2011, 58, 212-218.	1.3	40
32	Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner. American Journal of Physiology - Renal Physiology, 2016, 311, F991-F998.	1.3	39
33	Interleukin- $1\hat{1}^2$, but not interleukin-6, enhances renal and systemic endothelin production in vivo. American Journal of Physiology - Renal Physiology, 2008, 295, F446-F453.	1.3	38
34	Attenuated vasoconstrictor responses to endothelin in afferent arterioles during a high-salt diet. American Journal of Physiology - Renal Physiology, 2007, 292, F1208-F1214.	1.3	37
35	Endothelinâ€1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species. British Journal of Pharmacology, 2016, 173, 386-395.	2.7	37
36	Exaggerated Cardiovascular Stress Responses and Impaired β-Adrenergic–Mediated Pressor Recovery in Obese Zucker Rats. Hypertension, 2006, 48, 1109-1115.	1.3	36

#	Article	IF	Citations
37	Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sciences, 2016, 159, 20-29.	2.0	35
38	l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice. Frontiers in Immunology, 2013, 4, 480.	2.2	34
39	Endothelin and Renal Ion and Water Transport. Seminars in Nephrology, 2015, 35, 137-144.	0.6	34
40	Afferent arteriole responsiveness to endothelin receptor activation: does sex matter?. Biology of Sex Differences, 2019, 10, 1.	1.8	34
41	Loss of circadian gene <i>Bmal1</i> in the collecting duct lowers blood pressure in male, but not female, mice. American Journal of Physiology - Renal Physiology, 2020, 318, F710-F719.	1.3	32
42	Timing of Food Intake Drives the Circadian Rhythm of Blood Pressure. Function, 2020, 2, 29aa034.	1.1	32
43	High dietary sodium causes dyssynchrony of the renal molecular clock in rats. American Journal of Physiology - Renal Physiology, 2018, 314, F89-F98.	1.3	30
44	Evidence for Gâ€Protein–Coupled Estrogen Receptor as a Pronatriuretic Factor. Journal of the American Heart Association, 2020, 9, e015110.	1.6	30
45	Endothelin Activation of Reactive Oxygen Species Mediates Stress-Induced Pressor Response in Dahl Salt-Sensitive Prehypertensive Rats. Hypertension, 2010, 56, 282-289.	1.3	29
46	Unique endothelin receptor binding in kidneys of ET _B receptor deficient rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R674-R681.	0.9	27
47	L-type calcium channels in the renal microcirculatory response to endothelin. American Journal of Physiology - Renal Physiology, 2005, 288, F771-F777.	1.3	27
48	Acute increases of renal medullary osmolality stimulate endothelin release from the kidney. American Journal of Physiology - Renal Physiology, 2007, 292, F185-F191.	1.3	27
49	Sex differences in ET-1 receptor expression and Ca ²⁺ signaling in the IMCD. American Journal of Physiology - Renal Physiology, 2013, 305, F1099-F1104.	1.3	27
50	Albuminuria Is Associated with Endothelial Dysfunction and Elevated Plasma Endothelin-1 in Sickle Cell Anemia. PLoS ONE, 2016, 11, e0162652.	1.1	27
51	CHRONIC STUDIES ON THE INTERACTION BETWEEN NITRIC OXIDE AND ENDOTHELIN IN CARDIOVASCULAR AND RENAL FUNCTION. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 258-261.	0.9	26
52	Ovarian hormones modulate endothelin A and B receptor expression. Life Sciences, 2016, 159, 148-152.	2.0	26
53	Urinary excretion of vasoactive factors are correlated to sodium excretion. American Journal of Hypertension, 2001, 14, 1003-1006.	1.0	25
54	Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. American Journal of Physiology - Renal Physiology, 2012, 303, F659-F666.	1.3	25

#	Article	IF	CITATIONS
55	Endothelin type A receptors mediate pain in a mouse model of sickle cell disease. Haematologica, 2018, 103, 1124-1135.	1.7	25
56	Sex-Specific Contributions of Endothelin to Hypertension. Current Hypertension Reports, 2018, 20, 58.	1.5	25
57	Endothelinâ€1 as a master regulator of wholeâ€body Na ⁺ homeostasis. FASEB Journal, 2015, 29, 4937-4944.	0.2	23
58	Hyperfiltration predicts long-term renal outcomes in humanized sickle cell mice. Blood Advances, 2019, 3, 1460-1475.	2.5	23
59	Chronic endothelin-1 infusion elevates glomerular sieving coefficient and proximal tubular albumin reuptake in the rat. Life Sciences, 2012, 91, 634-637.	2.0	20
60	Mycophenolate mofetil prevents high-fat diet-induced hypertension and renal glomerular injury in Dahl SS rats. Physiological Reports, 2013, 1, e00137.	0.7	20
61	Diurnal Control of Blood Pressure Is Uncoupled From Sodium Excretion. Hypertension, 2020, 75, 1624-1634.	1.3	20
62	Time-restricted feeding rescues high-fat-diet-induced hippocampal impairment. IScience, 2021, 24, 102532.	1.9	20
63	Superoxide-dependent hypertension in male and female endothelin B receptor-deficient rats. Experimental Biology and Medicine, 2006, 231, 818-23.	1.1	20
64	ET _B receptor-deficient rats exhibit reduced contraction to ET-1 despite an increase in ET _A receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2680-H2686.	1.5	19
65	Endogenous endothelin attenuates the pressor response to acute environmental stress via the ETAreceptor. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1829-H1835.	1.5	19
66	In vivo evidence for endothelin-1-mediated attenuation of $\hat{l}\pm 1$ -adrenergic stimulation. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1251-H1258.	1.5	19
67	Endothelin, Nitric Oxide, and Reactive Oxygen Species in Diabetic Kidney Disease. Contributions To Nephrology, 2011, 172, 149-159.	1.1	19
68	Acute Pressor Response to Psychosocial Stress Is Dependent on Endotheliumâ€Derived Endothelinâ€1. Journal of the American Heart Association, 2018, 7, .	1.6	19
69	Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion. American Journal of Physiology - Renal Physiology, 2010, 299, F1424-F1432.	1.3	18
70	ETA Activation Mediates Angiotensin II-Induced Infiltration of Renal Cortical T Cells. Journal of the American Society of Nephrology: JASN, 2011, 22, 2187-2192.	3.0	18
71	Diurnal Regulation of Renal Electrolyte Excretion: The Role of Paracrine Factors. Annual Review of Physiology, 2020, 82, 343-363.	5.6	18
72	Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Scientific Reports, 2017, 7, 43152.	1.6	17

#	Article	IF	CITATIONS
73	Decreased endothelin binding and [Ca2+]i signaling in microvessels of DOCA-salt hypertensive rats. Journal of Hypertension, 2002, 20, 1799-1805.	0.3	16
74	Acclimation to a Highâ€Salt Diet Is Sex Dependent. Journal of the American Heart Association, 2022, 11, e020450.	1.6	16
75	Fluid-electrolyte homeostasis requires histone deacetylase function. JCI Insight, 2020, 5, .	2.3	14
76	High salt diet increases the pressor response to stress in female, but not male ETB -receptor-deficient rats. Physiological Reports, 2015, 3, e12326.	0.7	13
77	Renal denervation attenuates hypertension but not salt sensitivity in ET _B receptor-deficient rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R425-R437.	0.9	13
78	Impact of ET-1 and sex in glomerular hyperfiltration in humanized sickle cell mice. Clinical Science, 2019, 133, 1475-1486.	1.8	13
79	Tauroursodeoxycholic acid (TUDCA) abolishes chronic high saltâ€induced renal injury and inflammation. Acta Physiologica, 2019, 226, e13227.	1.8	13
80	Activation of neuronal endothelin B receptors mediates pressor response through alpha-1 adrenergic receptors. Physiological Reports, 2017, 5, e13077.	0.7	12
81	Autonomic nerves and circadian control of renal function. Autonomic Neuroscience: Basic and Clinical, 2019, 217, 58-65.	1.4	12
82	Angiotensin II is required to induce exaggerated salt sensitivity in Dahl rats exposed to maternal separation. Physiological Reports, 2015, 3, e12408.	0.7	11
83	Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats. American Journal of Physiology - Renal Physiology, 2016, 311, F260-F267.	1.3	11
84	Ovariectomy uncovers purinergic receptor activation of endothelin-dependent natriuresis. American Journal of Physiology - Renal Physiology, 2017, 313, F361-F369.	1.3	11
85	Maternal separation enhances anticontractile perivascular adipose tissue function in male rats on a high-fat diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1085-R1095.	0.9	11
86	Circadian regulation of kidney function: finding a role for Bmal1. American Journal of Physiology - Renal Physiology, 2018, 314, F675-F678.	1.3	11
87	Ethnic Differences in Nighttime Melatonin and Nighttime Blood Pressure: A Study in European Americans and African Americans. American Journal of Hypertension, 2019, 32, 968-974.	1.0	11
88	Activation of G protein-coupled estrogen receptor 1 ameliorates proximal tubular injury and proteinuria in Dahl salt-sensitive female rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R297-R306.	0.9	11
89	Arterial Pressure Response to Endothelin-1 and Sarafotoxin 6c in Rescued Endothelin-B-Deficient Rats. Journal of Cardiovascular Pharmacology, 2000, 36, S82-S85.	0.8	10
90	Differential regulation of nitric oxide synthase function in aorta and tail artery from 5/6 nephrectomized rats. Physiological Reports, 2013, 1, e00145.	0.7	10

#	Article	IF	CITATIONS
91	Endothelin contributes to blunted renal autoregulation observed with a high-salt diet. American Journal of Physiology - Renal Physiology, 2015, 309, F687-F696.	1.3	10
92	Endothelium-derived ET-1 and the development of renal injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1071-R1073.	0.9	10
93	Free radical scavenging decreases endothelin $\hat{\mathbf{e}}$ excretion and glomerular albumin permeability during type 1 diabetes. Physiological Reports, 2016, 4, e13055.	0.7	10
94	The Matrikine Acetylated Proline-Glycine-Proline Couples Vascular Inflammation and Acute Cardiac Rejection. Scientific Reports, 2017, 7, 7563.	1.6	10
95	Diurnal pattern in skin Na+ and water content is associated with salt-sensitive hypertension in ETB receptor-deficient rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R544-R551.	0.9	10
96	Functional Interaction of Endothelin Receptors in Mediating Natriuresis Evoked by G Protein–Coupled Estrogen Receptor 1. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 98-105.	1.3	10
97	Arterial Pressure Response to Endothelin-1 and Sarafotoxin 6c in Rescued Endothelin-B-Deficient Rats. Journal of Cardiovascular Pharmacology, 2000, 36, S82-S85.	0.8	9
98	Combined Endothelin A Blockade and Chlorthalidone Treatment in a Rat Model of Metabolic Syndrome. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 467-473.	1.3	9
99	2013 Dahl Lecture. Hypertension, 2014, 63, e110-7.	1.3	9
100	Combined hydroxyurea and ET _A receptor blockade reduces renal injury in the humanized sickle cell mouse. Acta Physiologica, 2019, 225, e13178.	1.8	9
101	Greater natriuretic response to ENaC inhibition in male versus female Sprague-Dawley rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R418-R427.	0.9	9
102	Serum 25-Hydroxyvitamin D Concentrations Are Associated with Mental Health and Psychosocial Stress in Young Adults. Nutrients, 2020, 12, 1938.	1.7	9
103	Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R630-R640.	0.9	9
104	Interplay between renal endothelin and purinergic signaling systems. American Journal of Physiology - Renal Physiology, 2017, 313, F666-F668.	1.3	8
105	Relation of urinary endothelin-1 to stress-induced pressure natriuresis in healthy adolescents. Journal of the American Society of Hypertension, 2018, 12, 34-41.	2.3	8
106	Sex differences in the trajectory of glomerular filtration rate in pediatric and murine sickle cell anemia. Blood Advances, 2020, 4, 263-265.	2.5	8
107	Circadian Control of Sodium and Blood Pressure Regulation. American Journal of Hypertension, 2021, 34, 1130-1142.	1.0	8
108	Liver circadian clock disruption alters perivascular adipose tissue gene expression and aortic function in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R960-R971.	0.9	8

#	Article	IF	CITATIONS
109	High molecular weight kininogen contributes to early mortality and kidney dysfunction in a mouse model of sickle cell disease. Journal of Thrombosis and Haemostasis, 2020, 18, 2329-2340.	1.9	7
110	Pentosan polysulfate preserves renal microvascular P2X1 receptor reactivity and autoregulatory behavior in DOCA-salt hypertensive rats. American Journal of Physiology - Renal Physiology, 2016, 310, F456-F465.	1.3	6
111	Angiotensin II and the Natriuretic and Blood Pressure Response to Mental Stress in African Americans. Ethnicity and Disease, 2018, 28, 511-516.	1.0	6
112	A pilot study of the effect of atorvastatin on endothelial function and albuminuria in sickle cell disease. American Journal of Hematology, 2019, 94, E299-E301.	2.0	6
113	New Clues Towards Solving the Mystery of Endothelin and Blood Pressure Regulation. Hypertension, 2015, 66, 275-277.	1.3	5
114	High salt intake increases endothelin B receptor function in the renal medulla of rats. Life Sciences, 2016, 159, 144-147.	2.0	5
115	Sex Differences in Diurnal Sodium Handling During Diet-Induced Obesity in Rats. Hypertension, 2022, 79, 1395-1408.	1.3	5
116	How does endothelin induce vascular oxidative stress in mineralocorticoid hypertension?. Clinical Science, 2006, 110, 205-206.	1.8	4
117	Variable reactive hyperemia in normotensive strains of rat. Physiological Reports, 2014, 2, e12052.	0.7	4
118	Indoleamine 2,3-dioxygenase inhibition alters the non-coding RNA transcriptome following renal ischemia-reperfusion injury. Transplant Immunology, 2014, 30, 140-144.	0.6	4
119	SONAR propels endothelin A receptor antagonists to success. Nature Reviews Nephrology, 2019, 15, 461-462.	4.1	4
120	Phase-I Study of ETA Receptor Antagonist Ambrisentan in Sickle Cell Disease. Blood, 2019, 134, 617-617.	0.6	4
121	Endothelin receptor blockade blunts the pressor response to acute stress in men and women with obesity. Journal of Applied Physiology, 2022, 132, 73-83.	1.2	4
122	Role for ovarian hormones in purinoceptor-dependent natriuresis. Biology of Sex Differences, 2020, 11, 52.	1.8	3
123	Endothelin B receptors impair baroreflex function and increase blood pressure variability during high salt diet. Autonomic Neuroscience: Basic and Clinical, 2021, 232, 102796.	1.4	3
124	Does Targeting the Lipophilic Milieu Provide Advantages for an Endothelin Antagonist?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 75-78.	3.4	3
125	The Augusta Heart Study. Journal of Environment and Health Sciences, 2019, 5, 15-23.	1.0	3
126	Short-term daytime restricted feeding in rats with high salt impairs diurnal variation of Na ⁺ excretion. American Journal of Physiology - Renal Physiology, 2022, 322, F335-F343.	1.3	3

#	Article	IF	CITATIONS
127	Dual Endothelin Receptor Antagonism Increases Resting Energy Expenditure in People with Increased Adiposity. American Journal of Physiology - Endocrinology and Metabolism, 2022, , .	1.8	3
128	A more direct way to measure glomerular albumin permeabilityâ€"even in human glomeruli!. Kidney International, 2018, 93, 1035-1037.	2.6	2
129	Introduction to special issue: Circadian regulation of metabolism, redox signaling and function in health and disease. Free Radical Biology and Medicine, 2018, 119, 1-2.	1.3	2
130	Dahl saltâ€sensitive rats on a highâ€fat diet develop hypertension and enhanced constriction to angiotensin II without changing endothelialâ€dependent vasorelaxation. FASEB Journal, 2010, 24, 1025.9.	0.2	2
131	Evidence of Angiotensin II (ANG II) and Endothelinâ€1 (ETâ€1) participation in vascular complications of diabetes via JAK2. FASEB Journal, 2006, 20, .	0.2	2
132	Renal medullary infusion of ET B receptor agonist induces diuresis and natriuresis via nitric oxide synthase (NOS) 1 and protein kinase (PK) G pathways. FASEB Journal, 2007, 21, A495.	0.2	1
133	High Molecular Weight Kininogen Contributes to End-Organ Damage and Mortality in a Mouse Model of Sickle Cell Disease. Blood, 2018, 132, 268-268.	0.6	1
134	Oxidative stress mediates the pressor response to acute environmental stress in Dahl saltâ€sensitive rats. FASEB Journal, 2006, 20, A357.	0.2	1
135	Natriuretic response to renal medullary endothelin B receptor activation is blunted in chronic angiotensin Ilâ€infused rats. FASEB Journal, 2009, 23, LB145.	0.2	1
136	Endothelin B (ETB) receptor protects against endoplasmic reticulum (ER) stressâ€induced renal damage. FASEB Journal, 2013, 27, 906.5.	0.2	1
137	Evidence that Vascular Endothelial Derived Endothelinâ€1 Promotes Development of Tunicamycinâ€Induced Endoplasmic Reticulum Stress in Renal Vessels. FASEB Journal, 2015, 29, 811.15.	0.2	1
138	Peroxiredoxinâ€⊋ recycling is slower in denser and pediatric sickle cell red cells. FASEB Journal, 2022, 36, e22267.	0.2	1
139	Comprehensive Physiology: a tool for advanced education in physiology. American Journal of Physiology - Advances in Physiology Education, 2016, 40, 275-277.	0.8	0
140	G Proteinâ€Coupled Estrogen Receptor 1 is Required for Greater Endothelinâ€1 Excretion in Female Mice. FASEB Journal, 2021, 35, .	0.2	0
141	Enhanced Vasoconstriction in Sickle Cell Disease is Mediated by ET _A Receptorâ€Dependent Induction of alpha _{1A} â€Adrenergic Receptor Expression. FASEB Journal, 2021, 35, .	0.2	0
142	Renal Mitochondrial Gene Expression is Dependent on Time of Day in Dietâ€induced Obesity. FASEB Journal, 2021, 35, .	0.2	0
143	Chronic Circadian Disruption Induces Cardiovascular Disease in Male Mice. FASEB Journal, 2021, 35, .	0.2	0
144	Role of ET B Receptors in the Renal Response to Big Endothelin-1: Contrasting Pharmacologic ET B Receptor Blockade with Genetic ET B Deficiency. Hypertension, 2000, 36, 711-711.	1.3	0

#	Article	IF	CITATIONS
145	Interleukinâ€6 does not contribute to the increase in renal endothelin production stimulated by high salt intake. FASEB Journal, 2006, 20, A765.	0.2	O
146	Afferent arteriolar responses to endothelinâ€1 are attenuated by a high salt diet. FASEB Journal, 2006, 20, A758.	0.2	0
147	NOS1 Knockout mice exhibit delayed Na excretion following a high salt challenge. FASEB Journal, 2006, 20, A333.	0.2	0
148	Early life stress results in an exaggerated pressor response to acute air jet stress in adult male, but not female rats. FASEB Journal, 2006, 20, A1192.	0.2	0
149	Control of renal endothelin release by medullary osmolarity. FASEB Journal, 2006, 20, .	0.2	0
150	Dependence of the endothelinâ€mediated pressor response on neuronal ET B â€mediated neurotransmitter release in sl/sl rats. FASEB Journal, 2007, 21, A886.	0.2	0
151	Renal medullary NADPH oxidase activity in DOCAâ€salt hypertensive rats. FASEB Journal, 2007, 21, A1364.	0.2	0
152	Nitric oxide mediates collecting duct endothelinâ€1 effects on blood pressure. FASEB Journal, 2007, 21, A894.	0.2	0
153	Chronic infusion of ILâ \in 1 î ² but not ILâ \in 6 enhances renal and systemic endothelin production in mice. FASEB Journal, 2007, 21, A590.	0.2	0
154	Effect of early life stress on the neurohormonal response to acute air jet stress in young adult rats. FASEB Journal, 2007, 21, A514.	0.2	0
155	Mechansim of reduced vascular relaxation in aorta from Dahl saltâ€sensitive rats on elevated dietary fat. FASEB Journal, 2008, 22, 969.34.	0.2	0
156	Interleukinâ€1 in chronic angiotensin IIâ€high salt diet induced hypertension. FASEB Journal, 2008, 22, 923.5.	0.2	0
157	Chronic ETA receptor blockade attenuates expression of inflammatory mediators in diabetic rats. FASEB Journal, 2008, 22, 944.3.	0.2	0
158	Natriuretic activity of prehypertensive Dahl saltâ€sensitive (DS) and saltâ€sesistant (SS13BN) rats. FASEB Journal, 2008, 22, .	0.2	0
159	High fat diet reduces NOS functional activity during vasoconstriction in aorta, but not small mesenteric arteries, from Dahl rats. FASEB Journal, 2008, 22, 947.9.	0.2	0
160	Air jet stress (AJS) induces ETâ€1 mediated reactive oxygen species (ROS) production that increases blood pressure in Dahl saltâ€sensitive (DS) rats FASEB Journal, 2008, 22, 969.5.	0.2	0
161	ET _A â€dependent natriuresis is mediated by NOS1 in renal medulla of female ET _B â€deficient rat. FASEB Journal, 2008, 22, 943.3.	0.2	0
162	Enhanced angiotensin Ilâ€induced aortic constriction in maternally separated rats is endotheliumâ€dependent and reactive oxygen species (ROS)â€independent FASEB Journal, 2009, 23, 598.2.	0.2	0

#	Article	IF	CITATIONS
163	Measurement of regional kidney perfusion in mice: comparison of a novel, nonâ€invasive technique against conventional laserâ€Doppler flowmetry FASEB Journal, 2009, 23, 969.1.	0.2	O
164	Mechanisms of attenuated angiotensin Ilâ€induced aortic constriction from Dahl saltâ€sensitive rats following a 4â€week highâ€fat diet. FASEB Journal, 2009, 23, 626.20.	0.2	0
165	Contrasting roles of ET A and ET B receptors in angiotensin IIâ€high salt dietâ€induced hypertension. FASEB Journal, 2009, 23, 606.1.	0.2	0
166	Augmented vascular reactivity induced by ETâ€l is associated with increased Oâ€GlcNAcylation. FASEB Journal, 2009, 23, 627.8.	0.2	0
167	Early life stress reduces renal function in male rats. FASEB Journal, 2010, 24, 1041.4.	0.2	0
168	Free Radical Scavenging Decreases Endothelinâ€1 (ETâ€1) Excretion and Glomerular Permeability During Diabetes. FASEB Journal, 2010, 24, 793.2.	0.2	0
169	Differential Effects of Endothelin A and B Receptor Antagonism on Diabetesâ€Induced Proteinuria, Glomerular Permeability, and Inflammation. FASEB Journal, 2010, 24, 812.1.	0.2	0
170	Evidence for ENaC involvement in hypertension produced by NOS1 gene deletion in the collecting duct. FASEB Journal, 2010, 24, 606.17.	0.2	0
171	High Salt Diet –Induced Afferent Arteriolar Autoregulatory Dysfunction is Improved by Acute Antioxidant Treatment. FASEB Journal, 2010, 24, 1059.9.	0.2	0
172	Analysis of arterial mechanics in a rat model of type 1 diabetes. FASEB Journal, 2011, 25, 1028.10.	0.2	0
173	Increased proximal tubular uptake prevents albuminuria in chronic endothelinâ€1â€infused rats as determined by intravital 2â€photon microscopy. FASEB Journal, 2011, 25, 665.5.	0.2	0
174	Sex difference of endothelin B receptorâ€dependent natriuresis in angiotensin II hypertension. FASEB Journal, 2011, 25, 1079.9.	0.2	0
175	Mycophenolate mofetil reduces renal T cell numbers and prevents high fat induced hypertension in Dahl rats. FASEB Journal, 2011, 25, 1030.8.	0.2	0
176	Acute changes in dietary sodium lead to sodium retention in the collecting duct NOS1 knockout mouse. FASEB Journal, 2012, 26, 1069.10.	0.2	0
177	Renal Medullary Circadian Clock Genes are Altered in Endothelin B Deficient Rats. FASEB Journal, 2012, 26, 1069.11.	0.2	0
178	Natriuretic response to renal medullary endothelin B receptor activation is impaired in Dahlâ€salt sensitive rats on a highâ€saloric diet. FASEB Journal, 2012, 26, .	0.2	0
179	Flow mediated dilation variation based on normotensive rat strain. FASEB Journal, 2012, 26, 865.6.	0.2	0
180	Specific Endothelin A (ETA) Receptor Blockade Results In Reduced Expression of Endoplasmic Reticulum (ER) Stress Proteins in Renal Medulla of Type†Diabetic (T1D) Rats. FASEB Journal, 2012, 26, 876.11.	0.2	O

#	Article	IF	CITATIONS
181	High salt intake increases ET B receptor function in the renal medulla of rats. FASEB Journal, 2012, 26, lb836.	0.2	O
182	Antihypertensive and renoprotective effects of ABT \hat{a} \in 627 and chlorthalidone treatment in Dahl S rats on a high salt high fat diet FASEB Journal, 2013, 27, .	0.2	0
183	Indoleamineâ€2,3â€Dioxygenase Restrains Hypertension Induced by Angiotensin II in Rats Fed a High Salt Diet. FASEB Journal, 2013, 27, 1115.2.	0.2	0
184	NADPH oxidase and ETA receptors mediate glomerular reactive oxygen species production in sickle cell nephropathy. FASEB Journal, 2013, 27, .	0.2	0
185	Sodium storage during high salt intake is not dependent upon endothelin B receptors. FASEB Journal, 2013, 27, 1115.8.	0.2	0
186	Maternal Separation (MS) enhances angiotensin II (Ang II)â€induced hypertension in Dahl rats fed a high salt diet. FASEB Journal, 2013, 27, 906.13.	0.2	0
187	Maternal separation (MS) increases acute and chronic norepinephrine (NE) sensitivity revealing sympathoâ€activation. FASEB Journal, 2013, 27, 906.14.	0.2	0
188	Gender Differences In Renal Blood Flow In Response To Endothelin-1 In a Mouse Model Of Sickle Cell Disease. Blood, 2013, 122, 1012-1012.	0.6	0
189	ET _B Receptors in High Salt Dietâ€Induced Decline of Renal Autoregulation in Rats. FASEB Journal, 2015, 29, 808.8.	0.2	0
190	TUDCA Attenuates High Saltâ€Induced Renal Injury in ET _B Deficient <i>sl/sl</i> Rats. FASEB Journal, 2015, 29, 811.14.	0.2	0
191	Increased Glomerular ETâ€1 in Female Sickle Cell Mice is Abolished by Chronic Hydroxyurea Treatment. FASEB Journal, 2015, 29, LB735.	0.2	0
192	Evidence for ETB receptor mediated pressor effects mediated by alphaâ€adrenergic receptors. FASEB Journal, 2015, 29, 968.12.	0.2	0
193	Circadian clock gene expression in human buccal cells: potential use as a biomarker for circadian rhythm disorders FASEB Journal, 2015, 29, 967.2.	0.2	0
194	Endothelial cell derived endothelinâ€1 (ETâ€1) regulates skin Na + storage: evidence for sex differences. FASEB Journal, 2015, 29, 811.9.	0.2	0
195	Sex Differences in Renal Inner Medullary ETâ€1 Gene Expression Levels with Increasing Medullary Osmolality. FASEB Journal, 2015, 29, 962.3.	0.2	0
196	KIMâ€1 as a new biomarker for glomerular hyperfiltration and chronic kidney disease in humanized sickle cell disease mice. FASEB Journal, 2018, 32, .	0.2	0
197	Hemodynamic Hyperâ€reactivity to Acute Stress in Individuals Reporting Adversity during Childhood: Role of Endothelinâ€1. FASEB Journal, 2018, 32, 714.13.	0.2	0
198	Evidence for Circadian Control of Endothelial Function in Mice on a High Fat Diet. FASEB Journal, 2018, 32, 905.8.	0.2	0

#	Article	IF	CITATIONS
199	Timing of food intake differentially impacts urinary electrolyte and aldosterone excretion. FASEB Journal, 2018, 32, 905.10.	0.2	O
200	Salt Diet Influences Endothelin†Signaling in Renal Sensory Nerves. FASEB Journal, 2018, 32, 885.19.	0.2	0
201	Collecting duct NOS1 activation is necessary for increased GFR in response to high salt diet. FASEB Journal, 2018, 32, 763.10.	0.2	0
202	Reduced Renal Primary Cilia Expression in Humanized Sickle Cell Mice. FASEB Journal, 2018, 32, 850.11.	0.2	0
203	Lack of endotheliumâ€derived ETâ€1 accelerates diabetesâ€mediated renal damage in female, but not male, mice. FASEB Journal, 2018, 32, 906.4.	0.2	0
204	Early life stress (ELS) protects against LNAME hypertensionâ€induced renal tubular damage. FASEB Journal, 2018, 32, 883.9.	0.2	0
205	Sexâ€specific Impairment of Diurnal Renal Na + Excretion in Obese Spragueâ€Dawley Rats. FASEB Journal, 2019, 33, 758.9.	0.2	0
206	Sexâ€Differences in Renal Na + Regulatory Mechanisms During Acclimation to a High Salt Diet. FASEB Journal, 2019, 33, 864.6.	0.2	0
207	Glomerular hyperfiltration predicts the onset of chronic kidney disease in humanized sickle cell mice. FASEB Journal, 2019, 33, 864.5.	0.2	0
208	Evidence of Endothelinâ€B Receptor Dysfunction in Obesity. FASEB Journal, 2019, 33, 832.4.	0.2	0
209	Tauroursodeoxycholic Acid (TUDCA) Prevents High Saltâ€Induced, ET B Dysfunctionâ€Dependent Renal Cortical Injury. FASEB Journal, 2019, 33, 866.2.	0.2	0
210	Endothelin B Receptors are Necessary for Appropriate Renal Afferent Nerve Responsiveness. FASEB Journal, 2019, 33, 745.6.	0.2	0
211	Restricting food availability to the active period restores rhythmic activation of aortic NOS3 in high fat diet fed mice. FASEB Journal, 2019, 33, 592.2.	0.2	0
212	Activation of G Proteinâ€coupled Estrogen Receptor Prevents High Saltâ€induced Hypertension. FASEB Journal, 2019, 33, 867.1.	0.2	0
213	Hydroxyurea Augments Nitric Oxide Bioavailability in Humanized Sickle Cell Mice. FASEB Journal, 2019, 33, 863.11.	0.2	0
214	Childhood Adversity Impairs the Autonomic Response to Acute Stress. FASEB Journal, 2019, 33, 838.4.	0.2	0
215	Renal Medullary Histone Deacetylase Dependent Regulation of Fluidâ€Electrolyte Homeostasis During High Salt Feeding. FASEB Journal, 2019, 33, 866.5.	0.2	0
216	Total Spectral Power and High Frequency Blood Pressure Variability is Reduced in Male Bmal1â€Collecting Duct Knockâ€Out Mice During the Inactive Period. FASEB Journal, 2019, 33, 569.20.	0.2	0

#	Article	IF	CITATIONS
217	ETA Receptor Blockade and Vascular Function in Patients with Sickle Cell Disease. Blood, 2020, 136, 25-26.	0.6	o
218	Low Blood Pressure is Independent of Plasma Renin in the <i>Bmal1</i> Knockout Rat. FASEB Journal, 2022, 36, .	0.2	0
219	Diurnal Differences in Mitochondrial Bioenergetics is Lost in Bmal1 Knockout Rats. FASEB Journal, 2022, 36, .	0.2	O
220	Uncovering the Complexities of Salt Sensitivity. Function, 0, , .	1.1	0
221	Environmental Circadian Disruption Alters Body Composition and Impairs Energy Expenditure Rhythm Dependent on the Clock Gene, Bmal1. FASEB Journal, 2022, 36, .	0.2	O
222	Chronic Circadian Disruption Contributes to Excess Aldosterone Production and Loss of Diurnal Electrolyte Excretion. FASEB Journal, 2022, 36, .	0.2	0