
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	47.7	898
2	γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chemistry, 2008, 10, 238-242.	9.0	864
3	Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, I ³ -Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Topics in Catalysis, 2008, 48, 49-54.	2.8	427
4	Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chemistry, 2013, 15, 439-445.	9.0	188
5	Efficient catalytic hydrogenation of levulinic acid: a key step in biomass conversion. Green Chemistry, 2012, 14, 2057.	9.0	128
6	Selective Conversion of Levulinic and Formic Acids to Î ³ -Valerolactone with the Shvo Catalyst. Organometallics, 2014, 33, 181-187.	2.3	128
7	NMR investigation of Pd(II)–Pd(0) reduction in the presence of mono- and ditertiary phosphines. Inorganica Chimica Acta, 1999, 286, 93-97.	2.4	111
8	Temperature dependence of the asymmetric induction in the PtCl(SnCl3)[(â~')-(2S,4S)-2,4-bis(diphenylphosphino)pentane]-catalyzed enantioselective hydroformylation reaction. Journal of Organometallic Chemistry, 1988, 350, 277-284.	1.8	95
9	Asymmetric hydroformylation of unsaturated esters with PtCl(SnCl3)[(R,R)-Diop] catalyst. Journal of Organometallic Chemistry, 1987, 330, 305-314.	1.8	88
10	An improved catalytic system for the reduction of levulinic acid to γ-valerolactone. Catalysis Science and Technology, 2014, 4, 2908-2912.	4.1	72
11	Direct asymmetric reduction of levulinic acid to gamma-valerolactone: synthesis of a chiral platform molecule. Green Chemistry, 2015, 17, 5189-5195.	9.0	70
12	A step towards hydroformylation under sustainable conditions: platinum-catalysed enantioselective hydroformylation of styrene in gamma-valerolactone. Green Chemistry, 2016, 18, 842-847.	9.0	69
13	Facile synthesis of primary amides and ketoamides via a palladium-catalysed carbonylation–deprotection reaction sequence. Tetrahedron Letters, 2007, 48, 2453-2456.	1.4	66
14	Asymmetric hydroformylation with Pt-phosphine-SnCl2 and Pt-bisphosphine-CuCl2 (or CuCl) catalytic systems. Journal of Organometallic Chemistry, 1989, 370, 257-261.	1.8	64
15	CO Insertion in Four-Coordinate cis-Methyl(carbonyl)platinum-Diphosphine Compounds. An Ionic Mechanism for Platinum-Diphosphine-Catalyzed Hydroformylation. Inorganic Chemistry, 1994, 33, 5708-5712.	4.0	64
16	Homogeneous catalytic aminocarbonylation of iodoalkenes and iodobenzene with amino acid esters under conventional conditions and in ionic liquids. Tetrahedron, 2005, 61, 797-802.	1.9	62
17	Synthesis of \hat{I}^3 -valerolactone using a continuous-flow reactor. RSC Advances, 2013, 3, 16283.	3.6	58
18	Asymmetric hydroformylation of styrene catalysed by platinum-tin complexes with chiral bis-binaphthophosphole ligands. Journal of Organometallic Chemistry, 1995, 491, 91-96.	1.8	57

#	Article	IF	CITATIONS
19	Stability of gamma-valerolactone under neutral, acidic, and basic conditions. Structural Chemistry, 2017, 28, 423-429.	2.0	57
20	Temperature dependence of the enantioselective hydroformylation with PtCl2[(S)-BINAP] + SnCl2 catalyst and the dynamic NMR study of the catalytic precursor. Journal of Molecular Catalysis, 1991, 67, 191-198.	1.2	51
21	Palladium-catalysed aminocarbonylation of steroidal 17-iodo-androst-16-ene derivatives in N,N′-dialkyl-imidazolium-type ionic liquids. Green Chemistry, 2003, 5, 643-645.	9.0	51
22	Rhodium-catalyzed hydrogenation of olefins in Î ³ -valerolactone-based ionic liquids. Green Chemistry, 2013, 15, 1857.	9.0	50
23	Platinum-catalysed enantioselective hydroformylation of styrene. Platinum-diphosphine-tin(II) fluoride catalytic system: a novel asymmetric hydroformylation catalyst. Journal of Organometallic Chemistry, 1993, 453, 155-158.	1.8	47
24	Sustainability Metrics for Biomass-Based Carbon Chemicals. ACS Sustainable Chemistry and Engineering, 2017, 5, 2734-2740.	6.7	47
25	Conservative evolution and industrial metabolism in Green Chemistry. Green Chemistry, 2018, 20, 2171-2191.	9.0	45
26	High-yielding synthesis of 1-isoindolinone derivatives via palladium-catalysed cycloaminocarbonylation. Tetrahedron, 2011, 67, 1036-1040.	1.9	44
27	Hydroformylation of chiral terpenes with PtCl(SnCl3)-(bis-phosphine) as catalyst. Journal of Organometallic Chemistry, 1990, 385, 147-152.	1.8	37
28	Application of γâ€Valerolactone as an Alternative Biomassâ€Based Medium for Aminocarbonylation Reactions. ChemPlusChem, 2016, 81, 1224-1229.	2.8	37
29	The role of additives in platinum-catalyzed hydroformylation. Journal of Organometallic Chemistry, 1990, 393, 153-158.	1.8	35
30	Facile Synthesis of Steroidal Phenyl Ketones via Homogeneous Catalytic Carbonylation. Tetrahedron, 2000, 56, 3415-3418.	1.9	34
31	Ruthenium-catalyzed solvent-free conversion of furfural to furfuryl alcohol. RSC Advances, 2017, 7, 3331-3335.	3.6	34
32	Palladium-catalysed carbonylation of 4-substituted 2-iodoaniline derivatives: carbonylative cyclisation and aminocarbonylation. Tetrahedron, 2006, 62, 12051-12056.	1.9	33
33	Homogeneous catalytic aminocarbonylation of nitrogen-containing iodo-heteroaromatics. Synthesis of N-substituted nicotinamide related compounds. Tetrahedron, 2007, 63, 10372-10378.	1.9	33
34	Facile synthesis of 1,8-naphthalimides in palladium-catalysed aminocarbonylation of 1,8-diiodo-naphthalene. Tetrahedron, 2008, 64, 983-987.	1.9	31
35	Facile synthesis of novel ferrocene α-ketoamides via homogeneous catalytic carbonylation. Tetrahedron Letters, 2001, 42, 739-741.	1.4	29
36	Carbonylative and direct Suzuki–Miyaura cross-coupling reactions with 1-iodo-cyclohexene. Journal of Molecular Catalysis A, 2006, 255, 97-102.	4.8	29

#	Article	IF	CITATIONS
37	Facile synthesis of 12-carboxamido-11-spirostenes via palladium-catalyzed carbonylation reactions. Steroids, 2006, 71, 875-879.	1.8	28
38	High-yielding synthesis of 2-arylacrylamides via homogeneous catalytic aminocarbonylation of α-iodostyrene and α,α′-diiodo-1,4-divinylbenzene. Tetrahedron, 2008, 64, 61-66.	1.9	28
39	Synthesis of Pentacyclic Steroids via Tandem Stille Coupling and Dielsâ^Alder Reactions. Journal of Organic Chemistry, 1997, 62, 1326-1332.	3.2	27
40	Synthesis of N-Substituted Steroidal Hydrazides in Homogeneous Catalytic Hydrazinocarbonylation Reaction. Journal of Organic Chemistry, 1999, 64, 2134-2136.	3.2	27
41	Production of platform molecules from sweet sorghum. RSC Advances, 2014, 4, 2081-2088.	3.6	27
42	Microwaveâ€Assisted Valorization of Biowastes to Levulinic Acid. ChemistrySelect, 2017, 2, 1375-1380.	1.5	27
43	Asymmetric hydroformylation of mono- and sesquiterpenes. Chirality, 1995, 7, 121-127.	2.6	26
44	Synthesis of tetrahydrophthalazine and phthalamide (phthalimide) derivatives via palladium-catalysed carbonylation of iodoarenes. Tetrahedron, 2011, 67, 9122-9128.	1.9	25
45	High-yielding synthesis of Weinreb amides via homogeneous catalytic carbonylation of iodoalkenes and iodoarenes. Tetrahedron, 2010, 66, 4479-4483.	1.9	24
46	Aminocarbonylation of 1,1′-diiodoferrocene, two-step synthesis of heterodisubstituted ferrocene derivatives via homogeneous catalytic carbonylation/coupling reactions. Journal of Organometallic Chemistry, 2004, 689, 2770-2775.	1.8	23
47	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of γ-Valerolactone + Methanol, Ethanol, and 2-Propanol. Journal of Chemical & Engineering Data, 2016, 61, 3326-3333.	1.9	23
48	Modular Synthesis of Î ³ -Valerolactone-Based Ionic Liquids and Their Application as Alternative Media for Copper-Catalyzed Ullmann-type Coupling Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 5097-5104.	6.7	23
49	Palladium-Catalysed Vinylic Substitution of Aryl/Vinyl Iodides and Triflates with α-Methylene-γ-butyrolactone â^ An Application to the Synthesis of 3-Alkyl-γ-Butyrolactones through Combined Palladium-Catalysed Coupling/Hydrogenation Reactions. European Journal of Organic Chemistry, 2001, 2001, 3165.	2.4	22
50	Homogeneous Pd-Catalyzed Heck Coupling in Î ³ -Valerolactone as a Green Reaction Medium: A Catalytic, Kinetic, and Computational Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 9926-9936.	6.7	22
51	Synthesis of steroidal diacyl hydrazines and their 1,3,4-oxadiazole derivatives. Steroids, 2002, 67, 581-586.	1.8	21
52	Prolinates as Secondary Amines in Aminocarbonylation: Synthesis of NAcylated Prolinates. Letters in Organic Chemistry, 2006, 3, 62-67.	0.5	21
53	Highly selective palladium-catalyzed aminocarbonylation and cross-coupling reactions on a cavitand scaffold. Tetrahedron, 2012, 68, 2657-2661.	1.9	21
54	Carboxamido steroids inhibit the opening properties of transient receptor potential ion channels by lipid raft modulation. Journal of Lipid Research, 2018, 59, 1851-1863.	4.2	21

#	Article	IF	CITATIONS
55	A possible way for the introduction of α- and β-formyl-ethyl-substituents into the steroid-skeleton via coupling and carbonylation reactions. Tetrahedron: Asymmetry, 1991, 2, 633-634.	1.8	20
56	Synthesis, Structure, and Dynamic Behaviour of Transition Metal Chelate Complexes with Atropisomeric Dithioether Ligands. European Journal of Inorganic Chemistry, 1998, 1998, 113-118.	2.0	20
57	FACILE, HIGH-YIELDING SYNTHESIS OF STEROIDAL CROWN ETHERS VIA PALLADIUM-CATALYZED CARBONYLATION REACTION. Synthetic Communications, 2001, 31, 335-341.	2.1	20
58	Catalytic transfer hydrogenation in \hat{I}^3 -valerolactone-based ionic liquids. RSC Advances, 2015, 5, 72529-72535.	3.6	20
59	Computational Characterization of Bidentate P-Donor Ligands: Direct Comparison to Tolman's Electronic Parameters. Molecules, 2018, 23, 3176.	3.8	20
60	Synthesis, Characterization, and Catalytic Activity of Rh(I) Complexes with (S)- BINAPO, an Axially Chiral Inducer Capable of Hemilabile P,O-Heterobidentate Coordination. Monatshefte Fżr Chemie, 2000, 131, 1351-1361.	1.8	19
61	Facile synthesis of 11-carboxamido-androst-4,9(11)-dienes via palladium-catalyzed aminocarbonylation. Steroids, 2007, 72, 627-632.	1.8	19
62	Functionalization of the estrone skeleton via homogeneous coupling and hydroformylation reactions. Journal of Organometallic Chemistry, 1993, 453, 159-162.	1.8	18
63	Synthesis of ferrocenoyl amino acid derivatives via homogeneous catalytic aminocarbonylation. Journal of Organometallic Chemistry, 2005, 690, 3237-3242.	1.8	18
64	Synthesis of N-picolylcarboxamides via palladium-catalysed aminocarbonylation of iodobenzene and iodoalkenes. Tetrahedron, 2014, 70, 218-224.	1.9	18
65	Influence of the 4-Substituents on the Reversal of Enantioselectivity in the Asymmetric Hydroformylation of 4-Substituted Styrenes with PtCl(SnCl ₃)[(2 <i>S,</i> 4 <i>S</i>)-BDPP]. Organometallics, 2014, 33, 1389-1396.	2.3	18
66	Palladium-catalyzed aryloxy- and alkoxycarbonylation of aromatic iodides in Î ³ -valerolactone as bio-based solvent. Journal of Organometallic Chemistry, 2020, 923, 121407.	1.8	18
67	Complex Formation of Fe(II) and Fe(III) Ions with OctafunctionalizedC-Methyl-calix[4]resorcinarene Possessing â^'OCH2COOH (K) Moieties. Journal of Physical Chemistry B, 2003, 107, 4727-4731.	2.6	17
68	Synthesis of Ortho-alkoxy-aryl Carboxamides via Palladium-Catalyzed Aminocarbonylation. Synthetic Communications, 2009, 39, 1534-1548.	2.1	17
69	One‣tep Synthesis of Dicarboxamides through Pd atalysed Aminocarbonylation with Diamines as Nâ€Nucleophiles. European Journal of Organic Chemistry, 2015, 2015, 1840-1847.	2.4	17
70	Cycloaddition of Nitrosoaromatics with Steroidal Dienes:Â Unexpected Dependence of the Chemoselectivity on the Aryl Ring Substituent. Journal of Organic Chemistry, 1999, 64, 5921-5925.	3.2	16
71	The synthesis of 13α-androsta-5,16-diene derivatives with carboxylic acid, ester and carboxamido functionalities at position-17 via palladium-catalyzed carbonylation. Steroids, 2009, 74, 419-423.	1.8	16
72	Mechanism of the Platinum/Tin-Catalyzed Asymmetric Hydroformylation of Styrene: A Detailed Computational Investigation of the Chiral Discrimination. Organometallics, 2013, 32, 3640-3650.	2.3	16

#	Article	IF	CITATIONS
73	Direct and carbonylative vinylation of steroidal triflates in the presence of homogeneous palladium catalysts. Steroids, 1994, 59, 691-695.	1.8	15
74	Highly Efficient Synthesis of Steroidal Hydroxamic Acid Derivatives via Homogeneous Catalytic Carbonylation Reaction. Tetrahedron, 2000, 56, 5253-5257.	1.9	15
75	Effect of covalent functionalization of C60 fullerene on its encapsulation by water soluble calixarenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 60, 71-78.	1.6	15
76	Facile, high-yielding synthesis of deepened cavitands: a synthetic and theoretical study. Supramolecular Chemistry, 2011, 23, 710-719.	1.2	15
77	Palladium-catalysed reactions of 8-hydroxy- and 8-benzyloxy-5,7-diiodoquinoline under aminocarbonylation conditions. Tetrahedron, 2011, 67, 2402-2406.	1.9	15
78	Synthesis of (E)-2-(1-ferrocenylmethylidene)malonic acid derivatives by a cobalt-catalyzed domino reaction of ethyl diazoacetate, carbon monoxide and ferrocenylimines. Journal of Organometallic Chemistry, 2011, 696, 1394-1403.	1.8	14
79	Hydrophobic cyanine dye-doped micelles for optical in vivo imaging of plasma leakage and vascular disruption. Journal of Biomedical Optics, 2015, 20, 1.	2.6	14
80	Palladium-catalysed aminocarbonylation of diiodopyridines. Tetrahedron, 2017, 73, 2131-2138.	1.9	14
81	Increased Complexation Ability of Water-Soluble Calix[4]resorcinarene Octacarboxylate toward Phenol by the Assistance of Fe(II) Ions. Journal of Physical Chemistry B, 2004, 108, 15519-15522.	2.6	13
82	Density Functional Study on the Mechanism of Nickel-Mediated Diazo Carbonylation. Organometallics, 2012, 31, 8082-8097.	2.3	13
83	Heterogeneous azide-alkyne cycloaddition in the presence of a copper catalyst supported on an ionic liquid polymer/silica hybrid material. Applied Organometallic Chemistry, 2018, 32, e4343.	3.5	13
84	Highly stereoselective hydroformylation of a (2R)-2-tert-butyl-Δ4-1,3-oxazoline derivative. Journal of Organometallic Chemistry, 1993, 445, 257-259.	1.8	12
85	Novel Method for the High-Yielding Synthesis of Steroidal Hydroxamic acid Derivatives. Synthetic Communications, 2000, 30, 1945-1953.	2.1	12
86	The Rate of Host-guest Complex Formation of Some Calixarene Derivatives Towards Neutral Aromatic Guests. Supramolecular Chemistry, 2006, 18, 251-256.	1.2	12
87	Homogeneous catalytic aminocarbonylation of 1-iodo-1-dodecene. The facile synthesis of odd-number carboxamides via palladium-catalysed aminocarbonylation. Tetrahedron, 2008, 64, 9874-9878.	1.9	12
88	The synthesis of 17-alkoxycarbonyl- and 17-carboxamido-13α-estra-1,3,5(10),16-tetraene derivatives via palladium-catalyzed carbonylation reactions. Steroids, 2008, 73, 669-675.	1.8	12
89	Substituent effects in aminocarbonylation of para -substituted iodobenzenes. Tetrahedron, 2016, 72, 7509-7516.	1.9	12
90	Viable pathways for the oxidative addition of iodobenzene to palladium(0)-triphenylphosphine-carbonyl complexes: a theoretical study. Dalton Transactions, 2017, 46, 15789-15802.	3.3	12

#	Article	IF	CITATIONS
91	Formation of Platinum–Tin Bond by Tin(II)Chloride Insertion. Journal of Cluster Science, 1998, 9, 321-328.	3.3	11
92	Synthetic and NMR Studies on Calix[<i>n</i>]Arene (<i>n</i> = 4,6,8) Triflates, Mesylates, and Tosylates. Supramolecular Chemistry, 1998, 10, 69-77.	1.2	11
93	Carbonylation of Enolizable Ketones (Enol Triflates) and Iodoalkenes. , 0, , 223-250.		11
94	Synthesis of elongated cavitands via click reactions and their use as chemosensors. Tetrahedron, 2013, 69, 8186-8190.	1.9	11
95	Vapor–Liquid Equilibrium of γ-Valerolactone and Formic Acid at <i>p</i> = 51 kPa. Journal of Chemical & Engineering Data, 2017, 62, 1058-1062.	1.9	11
96	Continuous flow hydrogenation of methyl and ethyl levulinate: an alternative route to <i>γ</i> -valerolactone production. Royal Society Open Science, 2019, 6, 182233.	2.4	11
97	Facile synthesis of 17-formyl steroids via palladium-catalyzed homogeneous carbonylation reaction. Steroids, 2002, 67, 777-781.	1.8	10
98	Enantioselective Carbonylation Reactions. , 0, , 65-92.		10
99	Synthesis of 2-naphthylacrylamides and 2-naphthylacrylates via homogeneous catalytic carbonylation of 1-iodo-1-naphthylethene derivatives. Tetrahedron, 2009, 65, 4795-4800.	1.9	10
100	Novel 13β- and 13α-d-homo steroids: 17a-carboxamido-d-homoestra-1,3,5(10),17-tetraene derivatives via palladium-catalyzed aminocarbonylations. Steroids, 2010, 75, 1075-1081.	1.8	10
101	Synthesis of 16α-amino-pregnenolone derivatives via ionic liquid-catalyzed aza-Michael addition and their evaluation as C 17,20 -lyase inhibitors. Steroids, 2017, 123, 61-66.	1.8	10
102	Asymmetric hydroformylation of deltacyclene. Tetrahedron: Asymmetry, 1992, 3, 1011-1014.	1.8	9
103	Facile, high-yielding synthesis of steroidal hydrazides via homogeneous hydrazinocarbonylation reaction. Tetrahedron Letters, 1997, 38, 4467-4468.	1.4	9
104	The formation of [PtCl(diphosphine-I)(β1-diphosphine-II)]+ species in the N-butyl-N′-methylimidazolium hexafluorophosphate ionic liquid: An NMR study. Journal of Coordination Chemistry, 2005, 58, 869-874.	2.2	9
105	High-Yielding Aminocarbonylation of 3-Iodo-2-Tropene by Using Amino Acid Esters as N-Nucleophiles. Letters in Organic Chemistry, 2007, 4, 236-238.	0.5	9
106	Synthesis of novel 13α-18-norandrostane–ferrocene conjugates via homogeneous catalytic methods and their investigation on TRPV1 receptor activation. Steroids, 2015, 104, 284-293.	1.8	9
107	Synthesis of amino-substituted pyridylglyoxylamides via palladium-catalysed aminocarbonylation. Tetrahedron, 2016, 72, 3063-3067.	1.9	9
108	The Use of Switchable Polarity Solvents for the Synthesis of 16â€Arylidene Steroids via Claisen–Schmidt Condensation. European Journal of Organic Chemistry, 2018, 2018, 3236-3244.	2.4	9

#	Article	IF	CITATIONS
109	27 Years of Catalytic Carbonylative Coupling Reactions in Hungary (1994–2021). Molecules, 2022, 27, 460.	3.8	9
110	Highly selective hydroformylation and dimerization reactions of 2-ferrocenylpropene. Journal of Organometallic Chemistry, 1992, 441, 117-123.	1.8	8
111	Formation of intramolecular hydrogen bonds in heterodisubstituted ferrocene diamides with a secondary and a tertiary amido group: X-ray structure of 1′-(N′-butyl-carbamoyl)-morpholino ferrocenecarboxamide. Journal of Organometallic Chemistry, 2006, 691, 3037-3042.	1.8	8
112	Investigation of Oxidoreductase Enzyme Catalysis in Water-Ionic Liquid (IL) Solvent Mixtures. Analytical Letters, 2010, 43, 1734-1745.	1.8	8
113	The role of the solvation shell decomposition of alkali metal ions in their selective complexation by resorcinarene and its cavitand. Supramolecular Chemistry, 2012, 24, 374-378.	1.2	8
114	Light-Enhanced Fluorescence of Multi-Level Cavitands Possessing Pyridazine Upper rim. Journal of Fluorescence, 2016, 26, 679-688.	2.5	8
115	Novel synthesis of 3-carboxamidolactam derivatives via palladium-catalysed aminocarbonylation. Tetrahedron, 2018, 74, 6116-6128.	1.9	8
116	Palladium-Assisted Synthesis of Heterocycles via Carbonylation Reactions. , 0, , 321-362.		7
117	A systematic approach to the synthesis of androstane-based 3,17-dicarboxamides (homo- and mixed) Tj ETQq1	1 0.784314 1.8	4 rgBT /Overle
118	Palladium-Mediated Catalysis Leads to Intramolecular Narcissistic Self-Sorting on a Cavitand Platform. Journal of Organic Chemistry, 2017, 82, 390-396.	3.2	7
119	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Biomass-Derived γ-Valerolactone + Tetrahydrofuran and 2-Methyltetrahydrofuran. Journal of Chemical & Engineering Data, 2020, 65, 3063-3071.	1.9	7
120	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Gamma-Valerolactone + Toluene. Journal of Chemical & Engineering Data, 2021, 66, 568-574.	1.9	7
121	Homogeneous coupling and carbonylation reactions of steroids possessing iodoalkene moieties. Catalytic and mechanistic aspects. Journal of Organometallic Chemistry, 1999, 586, 94-100.	1.8	6
122	Competitive thermodynamic and kinetic processes during dissociation of some host-guest complexes of calix[4]arene derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 59, 251-256.	1.6	6
123	Carbonylation of Diazoalkanes. , 0, , 199-221.		6
124	Homogeneous Carbonylation Reactions in the Synthesis of Compounds of Pharmaceutical Importance. , 0, , 301-320.		6
125	Theoretical insights into the nature of PtSn bond: Reevaluating the bonding/backâ€bonding properties of trichlorostannate with comparison to the cyano ligand. Journal of Computational Chemistry, 2017, 38, 1712-1726.	3.3	6
126	A novel Pd-catalysed sequential carbonylation/cyclization approach toward bis- <i>N</i> -heterocycles: rationalization by electronic structure calculations. Royal Society Open Science, 2018, 5, 181140.	2.4	6

#	Article	IF	CITATIONS
127	Isobaric Vapor–Liquid Equilibria of Binary Mixtures of γ-Valerolactone + Acetone and Ethyl Acetate. Journal of Chemical & Engineering Data, 2020, 65, 419-425.	1.9	6
128	Aminocarbonylation of 2-Iodothiophene: High-Yielding Synthesis of Thiophen-2-yl-glyoxylamides. Letters in Organic Chemistry, 2007, 4, 590-594.	0.5	5
129	Insertion of ethyl diazoacetate into the platinum–carbon bond of Pt(diphosphine)(halide)(aryl) 746-752.	1.4	5
130	Carbonylation of Allenes. , 0, , 291-300.		5
131	Functionalization of the pyridazin-3(2H)-one ring via palladium-catalysed aminocarbonylation. Tetrahedron, 2012, 68, 7855-7860.	1.9	5
132	Synthesis of Pyridazine Dicarboxamides via Highly Selective Palladium atalyzed Aminocarbonylation. Journal of Heterocyclic Chemistry, 2016, 53, 2020-2024.	2.6	5
133	The Role of Weak Interactions in Supramolecular Compounds: A Synthetic and Theoretical Study of Novel Elongated Cavitands. ChemistrySelect, 2017, 2, 8337-8345.	1.5	5
134	Functionalisation of the uracil ring via palladium-catalysed aminocarbonylation. Tetrahedron, 2019, 75, 4632-4639.	1.9	5
135	Synthesis of 5â€Carboxamidotriazoles via Azideâ€Alkyne Cycloaddition–Aminocarbonylation Sequence. ChemistrySelect, 2019, 4, 5527-5530.	1.5	5
136	Tetrabutylphosphonium 4-ethoxyvalerate as a biomass-originated media for homogeneous palladium-catalyzed Hiyama coupling reactions. Chemical Papers, 2020, 74, 4593-4598.	2.2	5
137	Weak Interaction of the Antimetabolite Drug Methotrexate with a Cavitand Derivative. International Journal of Molecular Sciences, 2020, 21, 4345.	4.1	5
138	Facile, Highâ€Yielding Synthesis of 4â€Functionalised 1,2,3â€Triazoles via Amino―and Aryloxycarbonylation. ChemistrySelect, 2020, 5, 448-451.	1.5	5
139	1,4-Pentanediol: Vapor Pressure, Density, Viscosity, Refractive Index, and Its Isobaric Vapor–Liquid Equilibrium with 2-Methyltetrahydrofurane. Journal of Chemical & Engineering Data, 2022, 67, 1450-1459.	1.9	5
140	A Novel Reaction between the P=O Group of Cyclic 2,4,6-Trialkylphenylphosphine Oxides and Dimethyl Acetylenedicarboxylate (DMAD). Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1681-1684.	1.6	4
141	Synthesis of Ferrocene Amides and α-Ketoamides via Palladium-Catalyzed Homogeneous Carbonylation Reaction. Synthesis, 2003, 2003, 0545-0550.	2.3	4
142	The Effect of the Electron Density Distribution of Guest on the Entropy Change During Complex Formation of Calix[]arene Hexasulfonate Host with ortho- and para-cresols as Guests. Supramolecular Chemistry, 2006, 18, 245-250.	1.2	4
143	Stereoselective Synthesis of Androstaneâ€Based Steroidal Phosphine Oxides Possessing the 16αâ€Điphenylphosphinyl Moiety. Synthetic Communications, 2006, 36, 2825-2832.	2.1	4
144	Facile Synthesis of Unsymmetrical 1,n′-Disubstituted Ferrocenoyl Amino Acid Derivatives by Palladium-Catalyzed Aminocarbonylation. Synthesis, 2007, 2007, 1456-1458.	2.3	4

145Recent Developments in Alkyne Carbonylation., 0, 251-290.4146Reactivity of Pincer Complexes Toward Carbon Monoxide., 0, 27-64.4147RemittivityåGdependent Carrier Behavior of Anline Derivatives Toward Common LowâGepermittivity Solvents in the Solubilization of Carbon Nanotubes. Fullerenes Nanotubes and Carbon2.14148High-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed1.94149High-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed1.94140High-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed1.94141Bigh-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed1.94142High-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed1.94143High-yielding synthesis of deepened cavitands bearing picolyl moieties on the upper rim. Tetrahedron,1.94143Aymmetric Hydroformylation of 4&UinylåG4,3&Gdioxolanå&GaGene. Journal of Heterocyclic Chemistry, 2017, 54, 264151Salladium-Catalyzed Synthesis of Andidines via <i>tetr1.94152Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation.3.84</i>	TIONS
147PermittivityäEdependent Carrier Behavior of Aniline Derivatives Toward Common LowäEpermittivity Solvents in the Solubilization of Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 247-257.4148High-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed aminocarbonylation. Tetrahedron, 2013, 69, 500-504.1.94149High-yielding synthesis of deepened cavitands bearing picolyl moieties on the upper rim. Tetrahedron, 2015, 71, 2555-2560.94150Asymmetric Hydroformylation of 4a€Vinyla€4,3a€dioxolana€2a€one. Journal of Heterocyclic Chemistry, 2017, 54, 2.64151Palladium-Catalyzed Synthesis of Amidines via <i>tert</i> slicitas-16126.3.54152Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation.3.84	
147 Solvents in the Solubilization of Carbon Nanotubes. Fullerenes Nanotubes and Carbon 2.1 4 148 High-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed 1.9 4 148 High-yielding synthesis of 1-carboxamido-3,4-dihydronaphthalenes via palladium-catalyzed 1.9 4 149 High-yielding synthesis of deepened cavitands bearing picolyl moieties on the upper rim. Tetrahedron, 2013, 69, 500-504. 1.9 4 149 High-yielding synthesis of deepened cavitands bearing picolyl moieties on the upper rim. Tetrahedron, 2017, 54, 2.6 4 150 Asymmetric Hydroformylation of 4â€Vinylâ€1,3â€dioxolanâ€2â€one. Journal of Heterocyclic Chemistry, 2017, 54, 2.6 4 151 Palladium-Catalyzed Synthesis of Amidines via <i>tert</i> Molecules, 2021, 26, 1813. 3.5 4 152 Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation. 3.8 4	
148 aminocarbonylation. Tetrahedron, 2013, 69, 500-504. 19 4 149 High-yielding synthesis of deepened cavitands bearing picolyl moieties on the upper rim. Tetrahedron, 2015, 71, 2555-2560. 19 4 150 Asymmetric Hydroformylation of 4â€Vinylâ€1,3â€dioxolanâ€2â€one. Journal of Heterocyclic Chemistry, 2017, 54, 2.6 4 151 Palladium-Catalyzed Synthesis of Amidines via <i>tert</i> 3, 16118-16126. 3.5 4 152 Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation. 3.8 4	
1492015, 71, 2555-2560.1.94150Asymmetric Hydroformylation of 4â€Vinylâ€1,3â€dioxolanâ€2â€one. Journal of Heterocyclic Chemistry, 2017, 54, 2.64151Palladium-Catalyzed Synthesis of Amidines via <i>tert</i> >Butyl isocyanide Insertion. ACS Omega, 2018, 3.54152Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation.3.84	
1430-1436. Palladium-Catalyzed Synthesis of Amidines via <i>tert</i> Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation. 3.5 4 152 Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation. 3.8 4	
1513, 16118-16126.3.54152Selective Synthesis of N-Acylnortropane Derivatives in Palladium-Catalysed Aminocarbonylation. Molecules, 2021, 26, 1813.3.84	
¹⁵² Molecules, 2021, 26, 1813.	
153Stereoisomeric Tris-BINOL-Menthol Bulky Monophosphites: Synthesis, Characterisation and Application in Rhodium-Catalysed Hydroformylation. Molecules, 2022, 27, 1989.3.84	
Highly Selective Synthesis of 6-Glyoxylamidoquinoline Derivatives via Palladium-Catalyzed3.84154Aminocarbonylation. Molecules, 2022, 27, 4.3.84	
Temperature-dependent solvent effect on the kinetic energy distribution on p-cresol molecule as building block of calixarene capsules. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1.6 3 2009, 64, 283-288.	
Synthesis of new steroidal derivatives by the reaction of steroid–amino acid conjugates with 156 N,N′-dicyclohexyl-carbodiimide. Unusual formation of steroidal imide derivatives. Tetrahedron, 2009, 1.9 3 65, 4659-4663.	
157Relationship of QTAIM and NOCV Descriptors with Tolman's Electronic Parameter. Advances in Chemistry, 2016, 2016, 1-7.1.13	
4â€Aminoâ€TEMPO as <i>N</i> â€Nucleophile in Palladiumâ€Catalyzed Aminocarbonylation. Journal of Heterocyclic Chemistry, 2017, 54, 634-640.2.6	
159Influence of base additives on the selectivity of palladium-catalysed aminocarbonylation: Highly selective functionalization of a cavitand scaffold. Molecular Catalysis, 2018, 444, 70-75.2.03	
160Synthesis of novel pregnane-based 20-carboxamides via palladium-catalysed aminocarbonylation.2.23160Chemical Papers, 2021, 75, 1861-1867.	
161 Synthesis of N-picolylcarboxamides in aminocarbonylation. Tetrahedron, 2021, 88, 132128. 1.9 3	

#	Article	IF	CITATIONS
163	Synthesis of Ferrocenoyl L-Arginine Derivatives by Homogeneous Catalytic Carbonylation. Synthetic Communications, 2009, 39, 887-895.	2.1	2
164	Thermodynamics of the Solvation of Carbon Nanotubes: Exchange of Aniline to Primary Alcohols on the Surface of Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 207-215.	2.1	2
165	Estimation of Bite Angle Effect on the Electronic Structure of Cobalt-Phosphine Complexes: A QTAIM Study. Journal of Quantum Chemistry, 2014, 2014, 1-5.	0.9	2
166	Synthesis and Electrochemical Properties of the Tetraferrocenyl avitand in Dimethyl Formamide Solvent Using Platinum and Carbon Working Electrodes. Electroanalysis, 2015, 27, 799-807.	2.9	2
167	Competitive processes associated to the interaction of a cavitand derivative with caffeic acid. Supramolecular Chemistry, 2016, 28, 582-588.	1.2	2
168	Nature of the Metalâ€Ligand Interactions in Complexes M(PH ₃) ₂ (<i>η</i> ² â€L) (M=Ni, Pd, Pt; L=CO ₂ , COS,) Tj ETQo	ე 010 50 rgB	T Øverlock 1
169	Push or Pull for a Better Selectivity? A Study on the Electronic Effects of Substituents of the Pyridine Ring on the Enantiomeric Recognition of Chiral Pyridino-18-Crown-6 Ethers. Symmetry, 2020, 12, 1795.	2.2	2
170	Synthesis of Axially Chiral Carboxamides via Aminocarbonylation of Aryl and Vinyl Iodides with 2,2'â€Diaminoâ€1,1'â€binaphthalene in the Presence of Palladium Catalysts. ChemistrySelect, 2020, 5, 11048-11051.	1.5	2
171	Solvent Switched Weak Interaction of a 4-Quinazolinone with a Cavitand Derivative. Molecules, 2020, 25, 1915.	3.8	2
172	Recent Advances in Two-Phase Carbonylation. , 0, , 115-134.		1
173	Electrochemical Experimental Study for the Characterization of Tetraferrocenylâ€Cavitand, Synthetized in Clickâ€Reaction. Electroanalysis, 2015, 27, 38-41.	2.9	1
174	Novel Platinum(II)—Complexes Incorporating Optically Active P-Heterocycles as the Ligands. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 821-823.	1.6	1
175	DFT Study on the Mechanism of Iron-Catalyzed Diazocarbonylation. Molecules, 2020, 25, 5860.	3.8	1
176	Platinum Complexes of Phospholes with Reduced Pyramidal Character. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 157-157.	1.6	0
177	The formation of Pt(P–P)(X)(COAr) (X=Cl, I; Ar=Ph, 2-Tioph) complexes via insertion of carbon monoxide. Transition Metal Chemistry, 2008, 33, 317-321.	1.4	0
178	Platinum(II) Complexes of P(III)-Heterocycles. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 847-849.	1.6	0
179	Environmental sustainability assessment of a biomass-based chemical industry in the Visegrad countries: Czech Republic, Hungary, Poland, and Slovakia. Chemical Papers, 2020, 74, 3067-3076.	2.2	0