## Brian Hendrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505381/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics, 2001, 27, 322-326.                                                               | 21.4 | 1,401     |
| 2  | Identification and Characterization of a Family of Mammalian Methyl-CpG Binding Proteins. Molecular<br>and Cellular Biology, 1998, 18, 6538-6547.                                    | 2.3  | 1,216     |
| 3  | Dynamic Reprogramming of DNA Methylation in the Early Mouse Embryo. Developmental Biology, 2002, 241, 172-182.                                                                       | 2.0  | 1,099     |
| 4  | MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genetics, 1999, 23, 58-61.                                                            | 21.4 | 783       |
| 5  | 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature, 2017, 544, 59-64.                                                                                 | 27.8 | 691       |
| 6  | The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature, 1999, 401, 301-304.                                                             | 27.8 | 576       |
| 7  | The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes and Development, 2001, 15, 1613-1618.                                                 | 5.9  | 431       |
| 8  | The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends in Genetics, 2003, 19, 269-277.                                                            | 6.7  | 348       |
| 9  | The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biology, 2006, 8, 285-292.                                                                 | 10.3 | 337       |
| 10 | Enhanced CpG Mutability and Tumorigenesis in MBD4-Deficient Mice. Science, 2002, 297, 403-405.                                                                                       | 12.6 | 294       |
| 11 | NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO Journal, 2012, 31, 593-605.                            | 7.8  | 224       |
| 12 | NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage<br>Commitment. Cell Stem Cell, 2012, 10, 583-594.                                  | 11.1 | 207       |
| 13 | Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 2003, 34, 145-147.                                                                                          | 21.4 | 181       |
| 14 | Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development (Cambridge), 2007, 134, 1123-1132.                                 | 2.5  | 153       |
| 15 | MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner. Cell Stem Cell, 2014, 15, 102-110.                                                                    | 11.1 | 152       |
| 16 | Kaiso-Deficient Mice Show Resistance to Intestinal Cancer. Molecular and Cellular Biology, 2006, 26, 199-208.                                                                        | 2.3  | 146       |
| 17 | The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of Active Transcription to Fine-Tune Gene Expression. Molecular Cell, 2018, 71, 56-72.e4. | 9.7  | 132       |
| 18 | Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene, 1999, 18, 8044-8047.                                              | 5.9  | 127       |

BRIAN HENDRICH

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Vestiges of a DNA methylation system in Drosophila melanogaster?. Nature Genetics, 1999, 23, 389-390.                                                                                                      | 21.4 | 124       |
| 20 | c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex.<br>Nature, 2011, 469, 231-235.                                                                                | 27.8 | 114       |
| 21 | Keeping things quiet: Roles of NuRD and Sin3 co-repressor complexes during mammalian development.<br>International Journal of Biochemistry and Cell Biology, 2009, 41, 108-116.                            | 2.8  | 111       |
| 22 | Transcriptional repressors: multifaceted regulators of gene expression. Development (Cambridge), 2013, 140, 505-512.                                                                                       | 2.5  | 109       |
| 23 | Genomic structure and chromosomal mapping of the murine and human Mbd1, Mbd2, Mbd3, and Mbd4<br>genes. Mammalian Genome, 1999, 10, 906-912.                                                                | 2.2  | 100       |
| 24 | CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Biochemical Society<br>Transactions, 2013, 41, 777-782.                                                                      | 3.4  | 84        |
| 25 | Sin3a is essential for the genome integrity and viability of pluripotent cells. Developmental Biology, 2012, 363, 62-73.                                                                                   | 2.0  | 62        |
| 26 | Constraint of gene expression by chromatin remodelling protein CHD4 facilitates lineage specification. Development (Cambridge), 2015, 142, 2586-97.                                                        | 2.5  | 61        |
| 27 | Mbd2 Contributes to DNA Methylation-Directed Repression of the Xist Gene. Molecular and Cellular<br>Biology, 2007, 27, 3750-3757.                                                                          | 2.3  | 57        |
| 28 | The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nature Cell Biology, 2011, 13, 1395-1405.                                                           | 10.3 | 57        |
| 29 | The Methyl-CpG Binding Proteins Mecp2, Mbd2 and Kaiso Are Dispensable for Mouse Embryogenesis, but<br>Play a Redundant Function in Neural Differentiation. PLoS ONE, 2009, 4, e4315.                       | 2.5  | 56        |
| 30 | The methyl binding domain 3/nucleosome remodelling and deacetylase complex regulates neural cell fate determination and terminal differentiation in the cerebral cortex. Neural Development, 2015, 10, 13. | 2.4  | 53        |
| 31 | Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and<br>Deacetylation (NuRD) complex. Development (Cambridge), 2016, 143, 3074-84.                          | 2.5  | 53        |
| 32 | A high-resolution map of transcriptional repression. ELife, 2017, 6, .                                                                                                                                     | 6.0  | 47        |
| 33 | PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.<br>Nature Communications, 2018, 9, 4300.                                                                   | 12.8 | 46        |
| 34 | The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment. EMBO Journal, 2019, 38, .                                                                 | 7.8  | 45        |
| 35 | Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs?. Oncogene, 2002, 21, 5394-5399.                                                                                               | 5.9  | 44        |
| 36 | MeCP2 in neurons: closing in on the causes of Rett syndrome. Human Molecular Genetics, 2005, 14,<br>R19-R26.                                                                                               | 2.9  | 36        |

BRIAN HENDRICH

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The function of chromatin modifiers in lineage commitment and cell fate specification. FEBS Journal, 2015, 282, 1692-1702.                                                                    | 4.7  | 36        |
| 38 | MeCP2 Dependent Heterochromatin Reorganization during Neural Differentiation of a Novel<br>Mecp2-Deficient Embryonic Stem Cell Reporter Line. PLoS ONE, 2012, 7, e47848.                      | 2.5  | 34        |
| 39 | FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells. Nature Communications, 2018, 9, 2520.                        | 12.8 | 31        |
| 40 | NuRD-dependent DNA methylation prevents ES cells from accessing a trophectoderm fate. Biology Open, 2012, 1, 341-352.                                                                         | 1.2  | 21        |
| 41 | Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. Journal of Experimental Medicine, 2017, 214, 3085-3104.                      | 8.5  | 21        |
| 42 | Human genetics: Methylation moves into medicine. Current Biology, 2000, 10, R60-R63.                                                                                                          | 3.9  | 20        |
| 43 | Combining fluorescence imaging with Hi-C to study 3D genome architecture of the same single cell.<br>Nature Protocols, 2018, 13, 1034-1061.                                                   | 12.0 | 14        |
| 44 | Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex. Stem Cell Research, 2020, 46, 101867. | 0.7  | 11        |
| 45 | Identification and characterization of a family of mammalian methyl CpG-binding proteins. Genetical<br>Research, 1998, 72, 59-72.                                                             | 0.9  | 10        |
| 46 | Chromatin Remodelling Proteins and Cell Fate Decisions in Mammalian Preimplantation Development.<br>Advances in Anatomy, Embryology and Cell Biology, 2018, 229, 3-14.                        | 1.6  | 5         |