Michael J Ragusa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505266/publications.pdf

Version: 2024-02-01

29 papers 6,485 citations

16 h-index 477307 29 g-index

46 all docs

46 docs citations

46 times ranked 16322 citing authors

#	Article	IF	CITATIONS
1	A Comparative Analysis of the Membrane Binding and Remodeling Properties of Two Related Sorting Nexin Complexes Involved in Autophagy. Biochemistry, 2023, 62, 657-668.	2.5	3
2	Dimerization-dependent membrane tethering by Atg23 is essential for yeast autophagy. Cell Reports, 2022, 39, 110702.	6.4	8
3	Characterization of Protein–Membrane Interactions in Yeast Autophagy. Cells, 2022, 11, 1876.	4.1	2
4	A highly conserved glutamic acid in <scp>ALFY</scp> inhibits membrane binding to aid in aggregate clearance. Traffic, 2021, 22, 23-37.	2.7	7
5	Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast. Journal of Molecular Biology, 2021, 433, 166809.	4.2	12
6	The carboxy terminus of yeast Atg13 binds phospholipid membrane via motifs that overlap with the Vac8-interacting domain. Autophagy, 2020, 16, 1007-1020.	9.1	17
7	Structure and redox properties of the diheme electron carrier cytochrome c4 from Pseudomonas aeruginosa. Journal of Inorganic Biochemistry, 2020, 203, 110889.	3.5	9
8	The Third Coiled Coil Domain of Atg11 Is Required for Shaping Mitophagy Initiation Sites. Journal of Molecular Biology, 2020, 432, 5752-5764.	4.2	7
9	The structure of a highly-conserved picocyanobacterial protein reveals a Tudor domain with an RNA-binding function. Journal of Biological Chemistry, 2019, 294, 14333-14344.	3.4	3
10	The IKK-binding domain of NEMO is an irregular coiled coil with a dynamic binding interface. Scientific Reports, 2019, 9, 2950.	3.3	20
11	Production, Crystallization, and Structure Determination of the IKK-binding Domain of NEMO. Journal of Visualized Experiments, 2019, , .	0.3	1
12	An atypical BAR domain protein in autophagy. Autophagy, 2018, 14, 1155-1156.	9.1	1
13	A pseudo-receiver domain in Atg32 is required for mitophagy. Autophagy, 2018, 14, 1620-1628.	9.1	21
14	Backbone and side chain resonance assignments for a structured domain within Atg32. Biomolecular NMR Assignments, 2017, 11, 211-214.	0.8	1
15	Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10112-E10121.	7.1	34
16	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
17	Solution Structure of the Atg1 Complex: Implications for the Architecture of the Phagophore Assembly Site. Structure, 2015, 23, 809-818.	3.3	35
18	Assembly and dynamics of the autophagy-initiating Atg1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12793-12798.	7.1	63

#	Article	IF	CITATIONS
19	The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends in Cell Biology, 2014, 24, 73-81.	7.9	66
20	A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5486-5491.	7.1	112
21	How Atg18 and the WIPIs sense phosphatidylinositol 3-phosphate. Autophagy, 2012, 8, 1851-1852.	9.1	20
22	Architecture of the Atg17 Complex as a Scaffold for Autophagosome Biogenesis. Cell, 2012, 151, 1501-1512.	28.9	205
23	Two-Site Recognition of Phosphatidylinositol 3-Phosphate by PROPPINs in Autophagy. Molecular Cell, 2012, 47, 339-348.	9.7	170
24	Flexibility in the PP1:spinophilin holoenzyme. FEBS Letters, 2011, 585, 36-40.	2.8	21
25	Structural Diversity in Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regulators. Structure, 2010, 18, 1094-1103.	3.3	110
26	The extended PP1 toolkit: designed to create specificity. Trends in Biochemical Sciences, 2010, 35, 450-458.	7.5	441
27	Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nature Structural and Molecular Biology, 2010, 17, 459-464.	8.2	181
28	Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9397-9402.	7.1	209
29	Structural characterization of the neurabin sterile alpha motif domain. Proteins: Structure, Function and Bioinformatics, 2007, 69, 192-198.	2.6	5