
## Mathias Soeken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2504694/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Xor-And-Inverter Graphs for Quantum Compilation. Npj Quantum Information, 2022, 8, .                                                                                        | 6.7  | 7         |
| 2  | Lowering the T-depth of Quantum Circuits via Logic Network Optimization. ACM Transactions on Quantum Computing, 2022, 3, 1-15.                                              | 4.3  | 2         |
| 3  | Three-Input Gates for Logic Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 2184-2188.                                  | 2.7  | 9         |
| 4  | SAT-Based Exact Synthesis: Encodings, Topology Families, and Parallelism. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 871-884. | 2.7  | 23        |
| 5  | Advanced Functional Decomposition Using Majority and Its Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1621-1634.  | 2.7  | 12        |
| 6  | Extending Boolean Methods for Scalable Logic Synthesis. IEEE Access, 2020, 8, 226828-226844.                                                                                | 4.2  | 4         |
| 7  | LUT-Based Hierarchical Reversible Logic Synthesis. IEEE Transactions on Computer-Aided Design of<br>Integrated Circuits and Systems, 2019, 38, 1675-1688.                   | 2.7  | 24        |
| 8  | Scalable Generic Logic Synthesis. , 2019, , .                                                                                                                               |      | 20        |
| 9  | Reversible Pebble Games for Reducing Qubits in Hierarchical Quantum Circuit Synthesis. , 2019, , .                                                                          |      | 3         |
| 10 | Structural rewriting in XOR-majority graphs. , 2019, , .                                                                                                                    |      | 17        |
| 11 | Mapping Monotone Boolean Functions into Majority. IEEE Transactions on Computers, 2019, 68, 791-797.                                                                        | 3.4  | 5         |
| 12 | Logic Synthesis for Established and Emerging Computing. Proceedings of the IEEE, 2019, 107, 165-184.                                                                        | 21.3 | 24        |
| 13 | On-the-fly and DAG-aware: Rewriting Boolean Networks with Exact Synthesis. , 2019, , .                                                                                      |      | 26        |
| 14 | Logic Synthesis for RRAM-Based In-Memory Computing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 1422-1435.                     | 2.7  | 37        |
| 15 | SAT based exact synthesis using DAG topology families. , 2018, , .                                                                                                          |      | 7         |
| 16 | Majority logic synthesis. , 2018, , .                                                                                                                                       |      | 10        |
| 17 | The complexity of error metrics. Information Processing Letters, 2018, 139, 1-7.                                                                                            | 0.6  | 6         |
|    |                                                                                                                                                                             |      |           |

2

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pairs of majority-decomposing functions. Information Processing Letters, 2018, 139, 35-38.                                                                            | 0.6 | 1         |
| 20 | metaSMT: focus on your application and not on solver integration. International Journal on Software<br>Tools for Technology Transfer, 2017, 19, 605-621.              | 1.9 | 7         |
| 21 | Exact Synthesis of Majority-Inverter Graphs and Its Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 1842-1855. | 2.7 | 62        |
| 22 | Hierarchical Reversible Logic Synthesis Using LUTs. , 2017, , .                                                                                                       |     | 16        |
| 23 | Design automation and design space exploration for quantum computers. , 2017, , .                                                                                     |     | 21        |
| 24 | Enabling exact delay synthesis. , 2017, , .                                                                                                                           |     | 9         |
| 25 | Multilevel design understanding. , 2016, , .                                                                                                                          |     | 5         |
| 26 | An MIG-based compiler for programmable logic-in-memory architectures. , 2016, , .                                                                                     |     | 30        |
| 27 | Technology Mapping of Reversible Circuits to Clifford+T Quantum Circuits. , 2016, , .                                                                                 |     | 28        |
| 28 | Unlocking efficiency and scalability of reversible logic synthesis using conventional logic synthesis. ,<br>2016, , .                                                 |     | 19        |
| 29 | Verifying the structure and behavior in UML/OCL models using satisfiability solvers. IET Cyber-Physical Systems: Theory and Applications, 2016, 1, 49-59.             | 3.3 | 16        |
| 30 | Multi-objective BDD optimization for RRAM based circuit design. , 2016, , .                                                                                           |     | 15        |
| 31 | SyReC: A hardware description language for the specification and synthesis of reversible circuits. The<br>Integration VLSI Journal, 2016, 53, 39-53.                  | 2.1 | 20        |
| 32 | Complexity of reversible circuits and their quantum implementations. Theoretical Computer Science, 2016, 618, 85-106.                                                 | 0.9 | 17        |
| 33 | BDD minimization for approximate computing. , 2016, , .                                                                                                               |     | 41        |
| 34 | Embedding of Large Boolean Functions for Reversible Logic. ACM Journal on Emerging Technologies in<br>Computing Systems, 2016, 12, 1-26.                              | 2.3 | 34        |
| 35 | Enumeration of Reversible Functions and Its Application to Circuit Complexity. Lecture Notes in Computer Science, 2016, , 255-270.                                    | 1.3 | 10        |
| 36 | A Fast Symbolic Transformation Based Algorithm for Reversible Logic Synthesis. Lecture Notes in Computer Science, 2016, , 307-321.                                    | 1.3 | 14        |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Formal Verification of Integer Multipliers by Combining Gröbner Basis with Logic Reduction. , 2016, , .                                                                   |     | 49        |
| 38 | Optimizing Majority-Inverter Graphs With Functional Hashing. , 2016, , .                                                                                                  |     | 19        |
| 39 | Simulation graphs for reverse engineering. , 2015, , .                                                                                                                    |     | 9         |
| 40 | Reversible circuit rewriting with simulated annealing. , 2015, , .                                                                                                        |     | 12        |
| 41 | Multi-Objective BDD Optimization with Evolutionary Algorithms. , 2015, , .                                                                                                |     | 8         |
| 42 | Specification-driven model transformation testing. Software and Systems Modeling, 2015, 14, 623-644.                                                                      | 2.7 | 32        |
| 43 | Verification of Static Aspects. , 2015, , 57-108.                                                                                                                         |     | Ο         |
| 44 | Verification of Dynamic Aspects. , 2015, , 109-129.                                                                                                                       |     | 0         |
| 45 | Ricercar: A Language for Describing andÂRewriting Reversible Circuits with Ancillae and Its<br>Permutation Semantics. Lecture Notes in Computer Science, 2015, , 200-215. | 1.3 | 3         |
| 46 | MetaSMT: a unified interface to SMT-LIB2. , 2014, , .                                                                                                                     |     | 1         |
| 47 | Automated and quality-driven requirements engineering. , 2014, , .                                                                                                        |     | 6         |
| 48 | Automating the translation of assertions using natural language processing techniques. , 2014, , .                                                                        |     | 12        |
| 49 | Self-Verification as the Key Technology for Next Generation Electronic Systems. , 2014, , .                                                                               |     | 9         |
| 50 | Trading off circuit lines and gate costs in the synthesis of reversible logic. The Integration VLSI<br>Journal, 2014, 47, 284-294.                                        | 2.1 | 46        |
| 51 | Quantum Circuit Optimization by Hadamard Gate Reduction. Lecture Notes in Computer Science, 2014, ,<br>149-162.                                                           | 1.3 | 19        |
| 52 | Mapping NCV Circuits to Optimized Clifford+T Circuits. Lecture Notes in Computer Science, 2014, ,<br>163-175.                                                             | 1.3 | 35        |
| 53 | Behaviour Driven Development for Tests and Verification. Lecture Notes in Computer Science, 2014, ,<br>61-77.                                                             | 1.3 | 5         |
| 54 | Requirements Engineering for Cyber-Physical Systems. Lecture Notes in Computer Science, 2014, ,<br>281-288.                                                               | 1.3 | 15        |

4

| #  | Article                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Formal Specification Level. Lecture Notes in Electrical Engineering, 2014, , 37-52.                                                           | 0.4 | 4         |
| 56 | Quantum circuits employing roots of the Pauli matrices. Physical Review A, 2013, 88, .                                                        | 2.5 | 35        |
| 57 | Grammar-based program generation based on model finding. , 2013, , .                                                                          |     | 1         |
| 58 | Debugging of Reversible Circuits Using pDDs. , 2013, , .                                                                                      |     | 2         |
| 59 | Improving the mapping of reversible circuits to quantum circuits using multiple target lines. , 2013, , .                                     |     | 50        |
| 60 | Determining Relevant Model Elements for the Verification of UML/OCL Specifications. , 2013, , .                                               |     | 6         |
| 61 | Exact Template Matching Using Boolean Satisfiability. , 2013, , .                                                                             |     | 17        |
| 62 | Towards a Generic Verification Methodology for System Models. , 2013, , .                                                                     |     | 7         |
| 63 | Lips: An IDE for model driven engineering based on natural language processing. , 2013, , .                                                   |     | 11        |
| 64 | Towards automatic scenario generation from coverage information. , 2013, , .                                                                  |     | 1         |
| 65 | Hardware-Software Co-Visualization: Developing systems in the holodeck. , 2013, , .                                                           |     | 3         |
| 66 | Using πDDs in the Design of Reversible Circuits. Lecture Notes in Computer Science, 2013, , 197-203.                                          | 1.3 | 1         |
| 67 | White Dots do Matter: Rewriting Reversible Logic Circuits. Lecture Notes in Computer Science, 2013, ,<br>196-208.                             | 1.3 | 27        |
| 68 | Reducing the Depth of Quantum Circuits Using Additional Circuit Lines. Lecture Notes in Computer Science, 2013, , 221-233.                    | 1.3 | 18        |
| 69 | Property Checking of Quantum Circuits Using Quantum Multiple-Valued Decision Diagrams. Lecture<br>Notes in Computer Science, 2013, , 183-196. | 1.3 | 4         |
| 70 | Debugging of inconsistent UML/OCL models. , 2012, , .                                                                                         |     | 21        |
| 71 | A Synthesis Flow for Sequential Reversible Circuits. , 2012, , .                                                                              |     | 11        |
| 72 | Eliminating invariants in UML/OCL models. , 2012, , .                                                                                         |     | 3         |

| #  | Article                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of reversible circuits with minimal lines for large functions. , 2012, , .                                           |     | 84        |
| 74 | Circuit Line Minimization in the HDL-Based Synthesis of Reversible Logic. , 2012, , .                                          |     | 11        |
| 75 | Behavior Driven Development for circuit design and verification. , 2012, , .                                                   |     | 12        |
| 76 | Exact Synthesis of Toffoli Gate Circuits with Negative Control Lines. , 2012, , .                                              |     | 22        |
| 77 | Optimizing the Mapping of Reversible Circuits to Four-Valued Quantum Gate Circuits. , 2012, , .                                |     | 20        |
| 78 | RevKit: An Open Source Toolkit for the Design of Reversible Circuits. Lecture Notes in Computer Science, 2012, , 64-76.        | 1.3 | 51        |
| 79 | Assisted Behavior Driven Development Using Natural Language Processing. Lecture Notes in Computer<br>Science, 2012, , 269-287. | 1.3 | 55        |
| 80 | Completeness-Driven Development. Lecture Notes in Computer Science, 2012, , 38-50.                                             | 1.3 | 12        |
| 81 | Automatic property generation for the formal verification of bus bridges. , 2011, , .                                          |     | 2         |
| 82 | Towards automatic determination of problem bounds for object instantiation in static model verification. , 2011, , .           |     | 5         |
| 83 | Designing a RISC CPU in Reversible Logic. , 2011, , .                                                                          |     | 7         |
| 84 | Verifying dynamic aspects of UML models. , 2011, , .                                                                           |     | 44        |
| 85 | Encoding OCL Data Types for SAT-Based Verification of UML/OCL Models. Lecture Notes in Computer Science, 2011, , 152-170.      | 1.3 | 29        |
| 86 | Reducing the number of lines in reversible circuits. , 2010, , .                                                               |     | 49        |
| 87 | Verifying UML/OCL models using Boolean satisfiability. , 2010, , .                                                             |     | 72        |
| 88 | Hierarchical synthesis of reversible circuits using positive and negative Davio decomposition. , 2010, , .                     |     | 25        |
| 89 | Window optimization of reversible and quantum circuits. , 2010, , .                                                            |     | 26        |
| 90 | Using Higher Levels of Abstraction for Solving Optimization Problems by Boolean Satisfiability. , 2008, , .                    |     | 4         |

6

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | ROS: Resource-constrained Oracle Synthesis for Quantum Computers. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 318, 119-130. | 0.8 | 3         |