
Yu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2504187/publications.pdf Version: 2024-02-01

<u>ΥΠ ΖΗΛΝΟ</u>

#	Article	IF	CITATIONS
1	Coronal relay reactor Fe3O4@CeO2 for accelerating ROS axial conversion through enhanced Enzyme-like effect and relay effect. Chemical Engineering Journal, 2022, 429, 132303.	12.7	14
2	Advances in nanoparticleâ€based lateral flow immunoassay for pointâ€ofâ€care testing. View, 2022, 3, .	5.3	22
3	Artificial Intelligence-Aided Multiple Tumor Detection Method Based on Immunohistochemistry-Enhanced Dark-Field Imaging. Analytical Chemistry, 2022, 94, 1037-1045.	6.5	4
4	A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia. Bioactive Materials, 2022, 18, 526-538.	15.6	19
5	Accurate, rapid and highly sensitive detection of African swine fever virus <i>via</i> graphene oxide-based accelerated strand exchange amplification. Analytical Methods, 2022, 14, 2072-2082.	2.7	2
6	Fluorescent Realgar Nanoclusters for Nuclear Targeting-Triggered Tumor Theranostics. ACS Applied Nano Materials, 2022, 5, 6485-6499.	5.0	3
7	Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal, 2022, 446, 137147.	12.7	35
8	Long-term fate tracking and quantitative analyzing of nanoparticles in stem cells with bright-field microscopy. Nano Today, 2022, 44, 101506.	11.9	3
9	Tri-primer-enhanced strand exchange amplification combined with rapid lateral flow fluorescence immunoassay to detect SARS-CoV-2. Analyst, The, 2021, 146, 6650-6664.	3.5	4
10	Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. Nanoscale, 2021, 13, 3613-3626.	5.6	17
11	Prussian Blue Nanoparticles Having Various Sizes and Crystallinities for Multienzyme Catalysis and Magnetic Resonance Imaging. ACS Applied Nano Materials, 2021, 4, 5176-5186.	5.0	21
12	Fe3O4@Pt nanozymes combining with CXCR4 antagonists to synergistically treat acute myeloid leukemia. Nano Today, 2021, 37, 101106.	11.9	33
13	Prussian Blue Nanozymes Prevent Anthracycline-Induced Liver Injury by Attenuating Oxidative Stress and Regulating Inflammation. ACS Applied Materials & amp; Interfaces, 2021, 13, 42382-42395.	8.0	41
14	Zwitterion-functionalized hollow mesoporous Prussian blue nanoparticles for targeted and synergetic chemo-photothermal treatment of acute myeloid leukemia. Journal of Materials Chemistry B, 2021, 9, 5245-5254.	5.8	15
15	Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. Journal of Materials Chemistry B, 2020, 8, 895-907.	5.8	15
16	Prussian blue nanoparticles induce myeloid leukemia cells to differentiate into red blood cells through nanozyme activities. Nanoscale, 2020, 12, 23084-23091.	5.6	12
17	Modular design of Bi-specific nanoplatform engaged in malignant lymphoma immunotherapy. Nanoscale, 2020, 12, 18418-18428.	5.6	6
18	Synthesis of Ultrasmall Fe ₃ O ₄ Nanoparticles as <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors. ACS Applied Nano Materials, 2020, 3, 3585-3595.	5.0	36

Yu Zhang

#	Article	IF	CITATIONS
19	Lateral flow fluorescent immunoassay based on isothermal amplification for rapid quantitative detection of <i>Salmonella</i> spp Analyst, The, 2020, 145, 2367-2377.	3.5	13
20	Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Acta Biomaterialia, 2019, 96, 491-504.	8.3	74
21	High-Performance Worm-like Mn–Zn Ferrite Theranostic Nanoagents and the Application on Tumor Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 29536-29548.	8.0	30
22	Enhanced Tumor Synergistic Therapy by Injectable Magnetic Hydrogel Mediated Generation of Hyperthermia and Highly Toxic Reactive Oxygen Species. ACS Nano, 2019, 13, 14013-14023.	14.6	161
23	Polymerase chain reaction combined with fluorescent lateral flow immunoassay based on magnetic purification for rapid detection of canine parvovirus 2. BMC Veterinary Research, 2019, 15, 30.	1.9	27
24	A signal amplifying fluorescent nanoprobe and lateral flow assay for ultrasensitive detection of cardiac biomarker troponin I. Analytical Methods, 2019, 11, 3506-3513.	2.7	16
25	Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjugate Chemistry, 2019, 30, 1273-1296.	3.6	113
26	<p>Apoptosis-promoting effect of rituximab-conjugated magnetic nanoprobes on malignant lymphoma cells with CD20 overexpression</p> . International Journal of Nanomedicine, 2019, Volume 14, 921-936.	6.7	22
27	Polyethyleneimine-coated Iron Oxide Nanoparticles as a Vehicle for the Delivery of Small Interfering RNA to Macrophages In Vitro and In Vivo . Journal of Visualized Experiments, 2019, , .	0.3	13
28	Antibody-Oriented Strategy and Mechanism for the Preparation of Fluorescent Nanoprobes for Fast and Sensitive Immunodetection. Langmuir, 2019, 35, 4860-4867.	3.5	52
29	Rapid Quantitative Detection of Salmonella spp. via Magnetic Beads-based Fluorescent Lateral Flow Immunoassay*. , 2019, , .		0
30	Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs. Nanoscale, 2018, 10, 1788-1797.	5.6	53
31	Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomaterialia, 2018, 74, 302-311.	8.3	62
32	Fluorescent Nanoprobes with Oriented Modified Antibodies to Improve Lateral Flow Immunoassay of Cardiac Troponin I. Analytical Chemistry, 2018, 90, 6502-6508.	6.5	106
33	A Novel AuNPâ€Based Glucose Oxidase Mimic with Enhanced Activity and Selectivity Constructed by Molecular Imprinting and O ₂ â€Containing Nanoemulsion Embedding. Advanced Materials Interfaces, 2018, 5, 1801070.	3.7	39
34	Timeâ€Dependent T ₁ –T ₂ Switchable Magnetic Resonance Imaging Realized by c(RGDyK) Modified Ultrasmall Fe ₃ O ₄ Nanoprobes. Advanced Functional Materials, 2018, 28, 1802281.	14.9	50
35	Precise Study on Size-Dependent Properties of Magnetic Iron Oxide Nanoparticles for <i>In Vivo</i> Magnetic Resonance Imaging. Journal of Nanomaterials, 2018, 2018, 1-9.	2.7	15
36	Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies. Journal of Thermal Biology, 2018, 76, 89-94.	2.5	18

Yu Zhang

#	Article	IF	CITATIONS
37	Integration of a Superparamagnetic Scaffold and Magnetic Field To Enhance the Wound-Healing Phenotype of Fibroblasts. ACS Applied Materials & Interfaces, 2018, 10, 22913-22923.	8.0	31
38	Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials, 2017, 140, 16-25.	11.4	97
39	Shape-dependent enzyme-like activity of Co3O4 nanoparticles and their conjugation with his-tagged EGFR single-domain antibody. Colloids and Surfaces B: Biointerfaces, 2017, 154, 55-62.	5.0	46
40	Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate therapy. Nanoscale, 2017, 9, 16175-16182.	5.6	49
41	Active-target T ₁ -weighted MR Imaging of Tiny Hepatic Tumor <i>via</i> RGD Modified Ultra-small Fe ₃ O ₄ Nanoprobes. Theranostics, 2016, 6, 1780-1791.	10.0	59
42	Multi-modal Mn–Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale, 2016, 8, 16902-16915.	5.6	76
43	Superparamagnetic anisotropic nano-assemblies with longer blood circulation in vivo: a highly efficient drug delivery carrier for leukemia therapy. Nanoscale, 2016, 8, 17085-17089.	5.6	23
44	Enzyme catalysis enhanced dark-field imaging as a novel immunohistochemical method. Nanoscale, 2016, 8, 8553-8558.	5.6	19
45	Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. Journal of the American Chemical Society, 2016, 138, 5860-5865.	13.7	611
46	Rituximab–Au nanoprobes for simultaneous dark-field imaging and DAB staining of CD20 over-expressed on Raji cells. Analyst, The, 2014, 139, 5660-5663.	3.5	14
47	Co ₃ O ₄ Nanoparticles with Multi-Enzyme Activities and Their Application in Immunohistochemical Assay. ACS Applied Materials & Interfaces, 2014, 6, 1959-1970.	8.0	357
48	High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials, 2014, 35, 9126-9136.	11.4	110
49	Shape Evolution of "Multibranched―Mn–Zn Ferrite Nanostructures with High Performance: A Transformation of Nanocrystals into Nanoclusters. Chemistry of Materials, 2013, 25, 3702-3709.	6.7	58
50	Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Scientific Reports, 2013, 3, 2655.	3.3	186
51	Dual Enzyme-like Activities of Iron Oxide Nanoparticles and Their Implication for Diminishing Cytotoxicity. ACS Nano, 2012, 6, 4001-4012.	14.6	717
52	A Hydrogen Peroxideâ€Responsive O ₂ Nanogenerator for Ultrasound and Magneticâ€Resonance Dual Modality Imaging. Advanced Materials, 2012, 24, 5205-5211.	21.0	117
53	Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology, 2011, 22, 225703.	2.6	47
54	Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale, 2010, 2, 2565.	5.6	104

#	Article	IF	CITATIONS
55	Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2, 577-583.	31.5	5,080