Gytis Dudas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2503531/publications.pdf

Version: 2024-02-01

257450 315739 5,654 38 24 38 h-index citations g-index papers 56 56 56 9480 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Real-time, portable genome sequencing for Ebola surveillance. Nature, 2016, 530, 228-232.	27.8	1,179
2	Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 2014, 345, 1369-1372.	12.6	1,083
3	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	27.8	346
4	Integrating influenza antigenic dynamics with molecular evolution. ELife, 2014, 3, e01914.	6.0	299
5	Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 2017, 546, 401-405.	27.8	298
6	Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell, 2015, 161, 1516-1526.	28.9	275
7	Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 2015, 524, 97-101.	27.8	272
8	The evolution of Ebola virus: Insights from the 2013–2016 epidemic. Nature, 2016, 538, 193-200.	27.8	264
9	MERS-CoV spillover at the camel-human interface. ELife, 2018, 7, .	6.0	172
10	The global antigenic diversity of swine influenza A viruses. ELife, 2016, 5, e12217.	6.0	146
11	MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3144-3149.	7.1	142
12	Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evolution, 2016, 2, vew016.	4.9	105
13	Evolution and Spread of Ebola Virus in Liberia, 2014–2015. Cell Host and Microbe, 2015, 18, 659-669.	11.0	87
14	Genome-wide evolutionary dynamics of influenza B viruses on a global scale. PLoS Pathogens, 2017, 13, e1006749.	4.7	78
15	Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. ELife, 2021, 10, .	6.0	69
16	Reassortment between Influenza B Lineages and the Emergence of a Coadapted PB1–PB2–HA Gene Complex. Molecular Biology and Evolution, 2015, 32, 162-172.	8.9	63
17	Phylogenetic Analysis of Guinea 2014 EBOV Ebolavirus Outbreak. PLOS Currents, 2014, 6, .	1.4	62
18	MERS-CoV recombination: implications about the reservoir and potential for adaptation. Virus Evolution, 2016, 2, vev023.	4.9	60

#	Article	IF	CITATIONS
19	Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nature Communications, 2018, 9, 2222.	12.8	59
20	Global genome analysis reveals a vast and dynamic anellovirus landscape within the human virome. Cell Host and Microbe, 2021, 29, 1305-1315.e6.	11.0	59
21	Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions. Nature Communications, 2021, 12, 5769.	12.8	51
22	Active Ebola Virus Replication and Heterogeneous Evolutionary Rates in EVD Survivors. Cell Reports, 2018, 22, 1159-1168.	6.4	37
23	The genetics of host–virus coevolution in invertebrates. Current Opinion in Virology, 2014, 8, 73-78.	5.4	35
24	The ability of single genes vs full genomes to resolve time and space in outbreak analysis. BMC Evolutionary Biology, 2019, 19, 232.	3. 2	35
25	Bayesian inference of reassortment networks reveals fitness benefits of reassortment in human influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17104-17111.	7.1	35
26	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	12.8	33
27	Emergence of an early SARS-CoV-2 epidemic in the United States. Cell, 2021, 184, 4939-4952.e15.	28.9	31
28	Are arthropods at the heart of virus evolution?. ELife, 2015, 4, .	6.0	26
29	Lower respiratory tract infections in children requiring mechanical ventilation: a multicentre prospective surveillance study incorporating airway metagenomics. Lancet Microbe, The, 2022, 3, e284-e293.	7.3	24
30	Inferring time-dependent migration and coalescence patterns from genetic sequence and predictor data in structured populations. Virus Evolution, 2019, 5, vez030.	4.9	20
31	Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nature Communications, 2022, 13, 1152.	12.8	20
32	Estimating effective population size changes from preferentially sampled genetic sequences. PLoS Computational Biology, 2020, 16, e1007774.	3. 2	14
33	Preliminary Evaluation of the Effect of Investigational Ebola Virus Disease Treatments on Viral Genome Sequences. Journal of Infectious Diseases, 2016, 214, S333-S341.	4.0	11
34	Comment on "Mutation rate and genotype variation of Ebola virus from Mali case sequences― Science, 2016, 353, 658-658.	12.6	6
35	Variant Analysis of SARS-CoV-2 Genomes from Belgian Military Personnel Engaged in Overseas Missions and Operations. Viruses, 2021, 13, 1359.	3.3	6
36	Polymorphism of genetic ambigrams. Virus Evolution, 2021, 7, veab038.	4.9	5

#	Article	IF	CITATIONS
37	Bulk Milk Tank Samples Are Suitable to Assess Circulation of Tick-Borne Encephalitis Virus in High Endemic Areas. Viruses, 2021, 13, 1772.	3.3	5
38	E-104 Virus genomes reveal factors that spread and sustained the Ebola epidemic. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 77, 43-43.	2.1	0