
Gael Choblet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2500425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enceladus as a potential oasis for life: Science goals and investigations for future explorations. Experimental Astronomy, 2022, 54, 809-847.	3.7	5
2	Theoretical Considerations on the Characteristic Timescales of Hydrogen Generation by Serpentinization Reactions on Enceladus. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	10
3	Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds. Nature Astronomy, 2022, 6, 554-559.	10.1	12
4	Tidally Induced Magmatic Pulses on the Oceanic Floor of Jupiter's Moon Europa. Geophysical Research Letters, 2021, 48, e2020GL090077.	4.0	36
5	Solid tides in Io's partially molten interior. Astronomy and Astrophysics, 2021, 650, A72.	5.1	4
6	Exploration of Icy Ocean Worlds Using Geophysical Approaches. Planetary Science Journal, 2021, 2, 150.	3.6	14
7	Short lifespans of serpentinization in the rocky core of Enceladus: Implications for hydrogen production. Icarus, 2021, 364, 114461.	2.5	18
8	Sublimation-driven convection in Sputnik Planitia on Pluto. Nature, 2021, 600, 419-423.	27.8	8
9	Cooling patterns in rotating thin spherical shells — Application to Titan's subsurface ocean. Icarus, 2020, 338, 113509.	2.5	28
10	The Fate of Liquids Trapped During the Earth's Inner Core Growth. Geophysical Research Letters, 2020, 47, e2019GL085654.	4.0	10
11	Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology. Icarus, 2020, 338, 113448.	2.5	8
12	Tidally Heated Convection and the Occurrence of Melting in Icy Satellites: Application to Europa. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006248.	3.6	31
13	Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life. Planetary and Space Science, 2020, 193, 104960.	1.7	15
14	Virtual Tide Gauges for Predicting Relative Sea Level Rise. Journal of Geophysical Research: Solid Earth, 2019, 124, 13367-13391.	3.4	9
15	Chemical Convection and Stratification in the Earth's Outer Core. Frontiers in Earth Science, 2019, 7, .	1.8	24
16	Tidal dissipation in Enceladus' uneven, fractured ice shell. Icarus, 2019, 328, 218-231.	2.5	32
17	Preferred locations of weak surface field in numerical dynamos with heterogeneous core–mantle boundary heat flux: consequences for the South Atlantic Anomaly. Geophysical Journal International, 2019, 217, 1179-1199.	2.4	22
18	Transâ€Dimensional Surface Reconstruction With Different Classes of Parameterization. Geochemistry, Geophysics, Geosystems, 2019, 20, 505-529.	2.5	35

GAEL CHOBLET

#	Article	IF	CITATIONS
19	Long-term stability of Enceladus' uneven ice shell. Icarus, 2019, 319, 476-484.	2.5	59
20	On the long-lasting sequences of coral reef terraces from SE Sulawesi (Indonesia): Distribution, formation, and global significance. Quaternary Science Reviews, 2018, 188, 37-57.	3.0	24
21	Does Titan's long-wavelength topography contain information about subsurface ocean dynamics?. Icarus, 2018, 310, 149-164.	2.5	22
22	Two-phase convection in Ganymede's high-pressure ice layer —Âlmplications for its geological evolution. Icarus, 2018, 299, 133-147.	2.5	49
23	Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of Glacial Isostatic Adjustment. Journal of Geodynamics, 2018, 122, 25-40.	1.6	26
24	Macromolecular organic compounds from the depths of Enceladus. Nature, 2018, 558, 564-568.	27.8	282
25	Thermally anomalous features in the subsurface of Enceladus's south polar terrain. Nature Astronomy, 2017, 1, .	10.1	41
26	Viscoelastic relaxation of Enceladus's ice shell. Icarus, 2017, 291, 31-35.	2.5	17
27	Heat transport in the high-pressure ice mantle of large icy moons. Icarus, 2017, 285, 252-262.	2.5	47
28	Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy, 2017, 1, 841-847.	10.1	158
29	A particle-in-cell method for studying double-diffusive convection in the liquid layers of planetary interiors. Journal of Computational Physics, 2017, 346, 552-571.	3.8	14
30	Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophysical Research Letters, 2016, 43, 5653-5660.	4.0	141
31	Water generation and transport below Europa's strike-slip faults. Journal of Geophysical Research E: Planets, 2016, 121, 2444-2462.	3.6	36
32	Can eustatic charts go beyond first order? Insights from the Permian–Triassic. Lithosphere, 2016, 8, 505-518.	1.4	14
33	Constraining mantle convection models with palaeomagnetic reversals record and numerical dynamos. Geophysical Journal International, 2016, 207, 1165-1184.	2.4	5
34	Consequences of large impacts on Enceladus' core shape. Icarus, 2016, 264, 300-310.	2.5	31
35	Towards more realistic core-mantle boundary heat flux patterns: a source of diversity in planetary dynamos. Progress in Earth and Planetary Science, 2015, 2, .	3.0	16
36	Giant impacts, heterogeneous mantle heating and a past hemispheric dynamo on Mars. Physics of the Earth and Planetary Interiors, 2015, 240, 114-124.	1.9	22

GAEL CHOBLET

#	Article	IF	CITATIONS
37	Despinning and shape evolution of Saturn's moon lapetus triggered by a giant impact. Icarus, 2015, 252, 454-465.	2.5	5
38	Numerical dynamos with outer boundary heat flux inferred from probabilistic tomography—consequences for latitudinal distribution of magnetic flux. Geophysical Journal International, 2015, 203, 840-855.	2.4	13
39	Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nature Geoscience, 2015, 8, 601-604.	12.9	41
40	Can large icy moons accrete undifferentiated?. Icarus, 2014, 237, 377-387.	2.5	18
41	Structure and dynamics of Titan's outer icy shell constrained from Cassini data. Icarus, 2014, 237, 16-28.	2.5	40
42	Probabilistic surface reconstruction of coastal sea level rise during the twentieth century. Journal of Geophysical Research: Solid Earth, 2014, 119, 9206-9236.	3.4	14
43	lce melting and downward transport of meltwater by twoâ€phase flow in Europa's ice shell. Journal of Geophysical Research E: Planets, 2014, 119, 532-549.	3.6	46
44	Impact of tidal heating on the onset of convection in Enceladus's ice shell. Icarus, 2013, 226, 898-904.	2.5	25
45	Predicting surface dynamic topographies of stagnant lid planetary bodies. Geophysical Journal International, 2013, 195, 1494-1508.	2.4	7
46	Mantle-driven geodynamo features – Effects of compositional and narrow D″ anomalies. Physics of the Earth and Planetary Interiors, 2012, 190-191, 34-43.	1.9	16
47	On the scaling of heat transfer for mixed heating convection in a spherical shell. Physics of the Earth and Planetary Interiors, 2012, 206-207, 31-42.	1.9	14
48	Tidally-induced melting events as the origin of south-pole activity on Enceladus. Icarus, 2012, 219, 655-664.	2.5	60
49	Present-day trends of vertical ground motion along the coast lines. Earth-Science Reviews, 2012, 110, 74-92.	9.1	54
50	Topography and geoid induced by a convecting mantle beneath an elastic lithosphere. Geophysical Journal International, 2012, 189, 55-72.	2.4	20
51	TIDALLY INDUCED THERMAL RUNAWAYS ON EXTRASOLAR EARTHS: IMPACT ON HABITABILITY. Astrophysical Journal, 2011, 728, 89.	4.5	50
52	Coupling of thermal evolution and despinning of early lapetus. Icarus, 2010, 207, 959-971.	2.5	36
53	Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites. Space Science Reviews, 2010, 153, 317-348.	8.1	52
54	Coupling mantle convection and tidal dissipation: Applications to Enceladus and Earthâ€like planets. Journal of Geophysical Research, 2010, 115, .	3.3	46

GAEL CHOBLET

#	Article	IF	CITATIONS
55	Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites. Space Sciences Series of ISSI, 2010, , 315-346.	0.0	0
56	Mantle-driven geodynamo features—effects of post-Perovskite phase transition. Earth, Planets and Space, 2009, 61, 1255-1268.	2.5	21
57	Thermal convection heated both volumetrically and from below: Implications for predictions of planetary evolution. Physics of the Earth and Planetary Interiors, 2009, 173, 290-296.	1.9	20
58	Onset of convection in a basally heated spherical shell, application to planets. Physics of the Earth and Planetary Interiors, 2009, 176, 157-173.	1.9	8
59	High-resolution record of tectonic and sedimentary processes in growth strata. Marine and Petroleum Geology, 2009, 26, 1350-1364.	3.3	40
60	Convective interactions between oceanic lithosphere and asthenosphere: Influence of a transform fault. Earth and Planetary Science Letters, 2008, 274, 301-309.	4.4	16
61	Å'DIPUS: a new tool to study the dynamics of planetary interiors. Geophysical Journal International, 2007, 170, 9-30.	2.4	49
62	Modelling thermal convection with large viscosity gradients in one block of the †̃cubed sphere'. Journal of Computational Physics, 2005, 205, 269-291.	3.8	36
63	Interior structure of terrestrial planets: Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties. Journal of Geophysical Research, 2005, 110, .	3.3	68
64	Tidally heated convection: Constraints on Europa's ice shell thickness. Journal of Geophysical Research, 2003, 108, .	3.3	177
65	Early transient cooling of Mars. Geophysical Research Letters, 2001, 28, 3035-3038.	4.0	19
66	Mantle upwelling and melting beneath slow spreading centers: effects of variable rheology and melt productivity. Earth and Planetary Science Letters, 2001, 184, 589-604.	4.4	67
67	3D thermal convection with variable viscosity: can transient cooling be described by a quasi-static scaling law?. Physics of the Earth and Planetary Interiors, 2000, 119, 321-336.	1.9	74