## Xuyu Tan

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499290/publications.pdf Version: 2024-02-01



Χυνυ Τλ

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Light-Triggered, Self-Immolative Nucleic Acid-Drug Nanostructures. Journal of the American Chemical<br>Society, 2015, 137, 6112-6115.                                                                       | 13.7 | 179       |
| 2  | Blurring the Role of Oligonucleotides: Spherical Nucleic Acids as a Drug Delivery Vehicle. Journal of the American Chemical Society, 2016, 138, 10834-10837.                                                | 13.7 | 154       |
| 3  | Molecular spherical nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4340-4344.                                                                   | 7.1  | 130       |
| 4  | Providing Oligonucleotides with Steric Selectivity by Brush-Polymer-Assisted Compaction. Journal of the American Chemical Society, 2015, 137, 12466-12469.                                                  | 13.7 | 81        |
| 5  | Nucleic acid-based drug delivery strategies. Journal of Controlled Release, 2020, 323, 240-252.                                                                                                             | 9.9  | 66        |
| 6  | Effective Antisense Gene Regulation via Noncationic, Polyethylene Glycol Brushes. Journal of the<br>American Chemical Society, 2016, 138, 9097-9100.                                                        | 13.7 | 58        |
| 7  | Polycondensation of Polymer Brushes via DNA Hybridization. Journal of the American Chemical Society, 2014, 136, 10214-10217.                                                                                | 13.7 | 57        |
| 8  | Bottlebrush-architectured poly(ethylene glycol) as an efficient vector for RNA interference in vivo.<br>Science Advances, 2019, 5, eaav9322.                                                                | 10.3 | 50        |
| 9  | Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides. Angewandte Chemie - International Edition, 2017, 56, 1239-1243.                     | 13.8 | 44        |
| 10 | Depth-Profiling the Nuclease Stability and the Gene Silencing Efficacy of Brush-Architectured<br>Poly(ethylene glycol)–DNA Conjugates. Journal of the American Chemical Society, 2017, 139,<br>10605-10608. | 13.7 | 44        |
| 11 | Self-immolative polymers in biomedicine. Journal of Materials Chemistry B, 2020, 8, 6697-6709.                                                                                                              | 5.8  | 35        |
| 12 | Facile synthesis of nucleic acid–polymer amphiphiles and their self-assembly. Chemical<br>Communications, 2015, 51, 7843-7846.                                                                              | 4.1  | 34        |
| 13 | Precision Tuning of DNA- and Poly(ethylene glycol)-Based Nanoparticles via Coassembly for Effective<br>Antisense Gene Regulation. Chemistry of Materials, 2017, 29, 9882-9886.                              | 6.7  | 34        |
| 14 | Modulating the Depolymerization of Self-Immolative Brush Polymers with Poly(benzyl ether)<br>Backbones. Macromolecules, 2018, 51, 2899-2905.                                                                | 4.8  | 31        |
| 15 | Modulating the Cellular Immune Response of Oligonucleotides by Brush Polymerâ€Assisted Compaction.<br>Small, 2017, 13, 1701432.                                                                             | 10.0 | 26        |
| 16 | Expanding the Materials Space of DNA via Organic-Phase Ring-Opening Metathesis Polymerization.<br>CheM, 2019, 5, 1584-1596.                                                                                 | 11.7 | 25        |
| 17 | Spherical Nucleic Acids for Topical Treatment of Hyperpigmentation. Journal of the American Chemical Society, 2021, 143, 1296-1300.                                                                         | 13.7 | 24        |
| 18 | Self-Assembled DNA–PEG Bottlebrushes Enhance Antisense Activity and Pharmacokinetics of Oligonucleotides. ACS Applied Materials & Interfaces, 2020, 12, 45830-45837.                                        | 8.0  | 20        |

Χυγυ Ταν

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides. Angewandte Chemie, 2017, 129, 1259-1263.      | 2.0 | 15        |
| 20 | Improving the Enzymatic Stability and the Pharmacokinetics of Oligonucleotides via DNA-Backboned<br>Bottlebrush Polymers. Nano Letters, 2018, 18, 7378-7382.          | 9.1 | 15        |
| 21 | Bottlebrush Polymer-Conjugated Melittin Exhibits Enhanced Antitumor Activity and Better Safety<br>Profile. ACS Applied Materials & Interfaces, 2021, 13, 42533-42542. | 8.0 | 8         |
| 22 | Rapid de novo discovery of peptidomimetic affinity reagents for human angiotensin converting enzyme 2. Communications Chemistry, 2022, 5, .                           | 4.5 | 7         |
| 23 | Photolabile Self-Immolative DNA-Drug Nanostructures. Methods in Molecular Biology, 2017, 1570, 209-221.                                                               | 0.9 | 0         |
| 24 | Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide<br>Macromonomer Approach. Macromolecules, 2022, 55, 2235-2242.                | 4.8 | 0         |