Barbara Imberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499/publications.pdf

Version: 2024-02-01

33 papers 3,346 citations

331670
21
h-index

28 g-index

33 all docs 33 docs citations

33 times ranked

3806 citing authors

#	Article	lF	CITATIONS
1	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Platelet Aggregation. Frontiers in Immunology, 2022, 13, 827146.	4.8	45
2	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	4.1	3
3	Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplantation, 2020, 29, 096368972096546.	2.5	1
4	Stem Cell Therapies in Kidney Diseases: Progress and Challenges. International Journal of Molecular Sciences, 2019, 20, 2790.	4.1	55
5	A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood. Stem Cells and Development, 2017, 26, 1258-1269.	2.1	31
6	Developmental Approaches to Kidney Regeneration. , 2017, , 1039-1050.		0
7	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
8	Pluripotent stem cells and tolerance induction in organ transplantation. Current Opinion in Organ Transplantation, 2015, 20, 86-93.	1.6	15
9	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	3.3	88
10	A Novel Strategy to Enhance Mesenchymal Stem Cell Migration Capacity and Promote Tissue Repair in an Injury Specific Fashion. Cell Transplantation, 2013, 22, 423-436.	2.5	109
11	Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells and Development, 2012, 21, 1911-1923.	2.1	112
12	Bone Marrow Mesenchymal Stem Cells in Organ Repair and Strategies to Optimize their Efficacy. , 2011, , 299-312.		1
13	Embryonic Stem Cells, Derived Either after In Vitro Fertilization or Nuclear Transfer, Prolong Survival of Semiallogeneic Heart Transplants. Journal of Immunology, 2011, 186, 4164-4174.	0.8	9
14	Potential of mesenchymal stem cells in the repair of tubular injury. Kidney International Supplements, 2011, 1, 90-93.	14.2	12
15	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	3.2	161
16	Mesenchymal Stem Cells and Their Use in Acute Renal Injury. , 2009, , 216-220.		0
17	Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice. Stem Cells, 2008, 26, 2075-2082.	3.2	351
18	Pretransplant Infusion of Mesenchymal Stem Cells Prolongs the Survival of a Semiallogeneic Heart Transplant through the Generation of Regulatory T Cells. Journal of Immunology, 2008, 181, 3933-3946.	0.8	405

#	Article	IF	CITATIONS
19	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
20	The Regenerative Potential of Stem Cells in Acute Renal Failure. Cell Transplantation, 2006, 15, 111-117.	2.5	58
21	The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs. Biomaterials, 2006, 27, 623-630.	11.4	28
22	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	6.1	690
23	Vascular Smooth Muscle Cells on Hyaluronic Acid: Culture and Mechanical Characterization of an Engineered Vascular Construct. Tissue Engineering, 2004, 10, 699-710.	4.6	59
24	The Response of Endothelial Cells to Fluid Shear Stress Using a Co-Culture Model of the Arterial Wall. Endothelium: Journal of Endothelial Cell Research, 2002, 9, 11-23.	1.7	61
25	Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-κB dependent up-regulation of IL-8 and MCP-11. Kidney International, 2002, 62, 846-856.	5.2	105
26	Verotoxin-1–induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood, 2001, 98, 1828-1835.	1.4	92
27	Shear Stress-Induced Cytoskeleton Rearrangement Mediates NF-κB-Dependent Endothelial Expression of ICAM-1. Microvascular Research, 2000, 60, 182-188.	2.5	29
28	Xenogeneic Serum Promotes Leukocyte-Endothelium Interaction under Flow through Two Temporally Distinct Pathways. Journal of the American Society of Nephrology: JASN, 1999, 10, 2197-2207.	6.1	20
29	Xenogeneic human serum promotes leukocyte adhesion to porcine endothelium under flow conditions, possibly through the activation of the transcription factor NFâ€PB. Xenotransplantation, 1998, 5, 57-60.	2.8	12
30	Effect of acetate, bicarbonate dialysis, and acetate-free biofiltration on nitric oxide synthesis: Implications for dialysis hypotension. American Journal of Kidney Diseases, 1998, 32, 115-124.	1.9	78
31	Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion Journal of Clinical Investigation, 1998, 101, 1905-1915.	8.2	377
32	Cyclosporine enhances leukocyte adhesion to vascular endothelium under physiologic flow conditions. American Journal of Kidney Diseases, 1996, 28, 23-31.	1.9	27
33	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Thrombus Formation. SSRN Electronic Journal, 0, , .	0.4	1