
Barbara Imberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	6.1	690
2	Pretransplant Infusion of Mesenchymal Stem Cells Prolongs the Survival of a Semiallogeneic Heart Transplant through the Generation of Regulatory T Cells. Journal of Immunology, 2008, 181, 3933-3946.	0.8	405
3	Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion Journal of Clinical Investigation, 1998, 101, 1905-1915.	8.2	377
4	Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice. Stem Cells, 2008, 26, 2075-2082.	3.2	351
5	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
6	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	3.2	161
7	Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells and Development, 2012, 21, 1911-1923.	2.1	112
8	A Novel Strategy to Enhance Mesenchymal Stem Cell Migration Capacity and Promote Tissue Repair in an Injury Specific Fashion. Cell Transplantation, 2013, 22, 423-436.	2.5	109
9	Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-κB dependent up-regulation of IL-8 and MCP-11. Kidney International, 2002, 62, 846-856.	5.2	105
10	Verotoxin-1–induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood, 2001, 98, 1828-1835.	1.4	92
11	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	3.3	88
12	Effect of acetate, bicarbonate dialysis, and acetate-free biofiltration on nitric oxide synthesis: Implications for dialysis hypotension. American Journal of Kidney Diseases, 1998, 32, 115-124.	1.9	78
13	The Response of Endothelial Cells to Fluid Shear Stress Using a Co-Culture Model of the Arterial Wall. Endothelium: Journal of Endothelial Cell Research, 2002, 9, 11-23.	1.7	61
14	Vascular Smooth Muscle Cells on Hyaluronic Acid: Culture and Mechanical Characterization of an Engineered Vascular Construct. Tissue Engineering, 2004, 10, 699-710.	4.6	59
15	The Regenerative Potential of Stem Cells in Acute Renal Failure. Cell Transplantation, 2006, 15, 111-117.	2.5	58
16	Stem Cell Therapies in Kidney Diseases: Progress and Challenges. International Journal of Molecular Sciences, 2019, 20, 2790.	4.1	55
17	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Platelet Aggregation. Frontiers in Immunology, 2022, 13, 827146.	4.8	45
18	A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood. Stem Cells and Development, 2017, 26, 1258-1269.	2.1	31

BARBARA IMBERTI

#	Article	IF	CITATIONS
19	Shear Stress-Induced Cytoskeleton Rearrangement Mediates NF-κB-Dependent Endothelial Expression of ICAM-1. Microvascular Research, 2000, 60, 182-188.	2.5	29
20	The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs. Biomaterials, 2006, 27, 623-630.	11.4	28
21	Cyclosporine enhances leukocyte adhesion to vascular endothelium under physiologic flow conditions. American Journal of Kidney Diseases, 1996, 28, 23-31.	1.9	27
22	Xenogeneic Serum Promotes Leukocyte-Endothelium Interaction under Flow through Two Temporally Distinct Pathways. Journal of the American Society of Nephrology: JASN, 1999, 10, 2197-2207.	6.1	20
23	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
24	Pluripotent stem cells and tolerance induction in organ transplantation. Current Opinion in Organ Transplantation, 2015, 20, 86-93.	1.6	15
25	Xenogeneic human serum promotes leukocyte adhesion to porcine endothelium under flow conditions, possibly through the activation of the transcription factor NFâ€₽B. Xenotransplantation, 1998, 5, 57-60.	2.8	12
26	Potential of mesenchymal stem cells in the repair of tubular injury. Kidney International Supplements, 2011, 1, 90-93.	14.2	12
27	Embryonic Stem Cells, Derived Either after In Vitro Fertilization or Nuclear Transfer, Prolong Survival of Semiallogeneic Heart Transplants. Journal of Immunology, 2011, 186, 4164-4174.	0.8	9
28	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	4.1	3
29	Bone Marrow Mesenchymal Stem Cells in Organ Repair and Strategies to Optimize their Efficacy. , 2011, , 299-312.		1
30	Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplantation, 2020, 29, 096368972096546.	2.5	1
31	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Thrombus Formation. SSRN Electronic Journal, 0, , .	0.4	1
32	Developmental Approaches to Kidney Regeneration. , 2017, , 1039-1050.		0
33	Mesenchymal Stem Cells and Their Use in Acute Renal Injury. , 2009, , 216-220.		Ο