
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2498590/publications.pdf Version: 2024-02-01

Ιινιλή Ζηλι

#	Article	IF	CITATIONS
1	MicroRNA482/2118, a miRNA superfamily essential for both disease resistance and plant development. New Phytologist, 2022, 233, 2047-2057.	7.3	29
2	Regulation of DNA Methylation During Plant Endosperm Development. Frontiers in Genetics, 2022, 13, 760690.	2.3	4
3	A SYBR Gold-based Label-free in vitro Dicing Assay. Bio-protocol, 2022, 12, e4382.	0.4	1
4	Plant Public RNAâ€seq Database: a comprehensive online database for expression analysis of ~45 000 plant public RNAâ€seq libraries. Plant Biotechnology Journal, 2022, 20, 806-808.	8.3	53
5	Poreâ€C simultaneously captures genomeâ€wide multiâ€way chromatin interaction and associated DNA methylation status in Arabidopsis. Plant Biotechnology Journal, 2022, 20, 1009-1011.	8.3	7
6	Safeguard DCL2-Dependent 22-nt siRNA generation by DCL1. Biochemical and Biophysical Research Communications, 2022, 605, 97-103.	2.1	0
7	Induced Mutation in GmCOP1b Enhances the Performance of Soybean under Dense Planting Conditions. International Journal of Molecular Sciences, 2022, 23, 5394.	4.1	4
8	The antagonistic MYB paralogs <i>RH1</i> and <i>RH2</i> govern anthocyanin leaf markings in <i>Medicago truncatula</i> . New Phytologist, 2021, 229, 3330-3344.	7.3	18
9	FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biology, 2021, 22, 66.	8.8	66
10	sRNAanno—a database repository of uniformly annotated small RNAs in plants. Horticulture Research, 2021, 8, 45.	6.3	63
11	Substrate deformation regulates DRM2-mediated DNA methylation in plants. Science Advances, 2021, 7, .	10.3	15
12	Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. Plant Cell, 2021, 33, 2950-2964.	6.6	13
13	FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing. Nature Protocols, 2021, 16, 4355-4381.	12.0	24
14	Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. Annual Review of Phytopathology, 2021, 59, 265-288.	7.8	27
15	Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science, 2021, 374, 1152-1157.	12.6	58
16	Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing. Genome Biology, 2021, 22, 322.	8.8	13
17	An Online Database for Exploring Over 2,000 Arabidopsis Small RNA Libraries. Plant Physiology, 2020, 182, 685-691.	4.8	19
18	Soybean DICER-LIKE2 Regulates Seed Coat Color via Production of Primary 22-Nucleotide Small Interfering RNAs from Long Inverted Repeats. Plant Cell, 2020, 32, 3662-3673.	6.6	35

#	Article	IF	CITATIONS
19	The chromatin will never forget. Nature Plants, 2020, 6, 1396-1397.	9.3	1
20	A Comprehensive Online Database for Exploring â^1⁄420,000 Public Arabidopsis RNA-Seq Libraries. Molecular Plant, 2020, 13, 1231-1233.	8.3	103
21	Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nature Plants, 2020, 6, 780-788.	9.3	87
22	The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nature Communications, 2020, 11, 2798.	12.8	22
23	Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature, 2020, 581, 89-93.	27.8	112
24	The Dynamic Kaleidoscope of RNA Biology in Plants. Plant Physiology, 2020, 182, 1-9.	4.8	11
25	Widespread long-range cis-regulatory elements in the maize genome. Nature Plants, 2019, 5, 1237-1249.	9.3	250
26	A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility. Cell Host and Microbe, 2019, 25, 153-165.e5.	11.0	173
27	RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nature Plants, 2018, 4, 181-188.	9.3	106
28	Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1069-E1074.	7.1	51
29	Solitary fibrous tumor of the abdominal wall re-surfacing as unilateral pleural effusion and mass: A case report and review of the literature. Respiratory Medicine Case Reports, 2018, 23, 4-7.	0.4	4
30	<i>Cis</i> â€directed cleavage and nonstoichiometric abundances of 21â€nucleotide reproductive phased small interfering <scp>RNA</scp> s in grasses. New Phytologist, 2018, 220, 865-877.	7.3	38
31	MS23, a master basic helix-loop-helix factor, regulates the specification and development of tapetum in maize. Development (Cambridge), 2017, 144, 163-172.	2.5	71
32	Characteristics and processing of Pol IV-dependent transcripts in Arabidopsis. Journal of Genetics and Genomics, 2017, 44, 3-6.	3.9	9
33	The Ca ²⁺ /calmodulin2â€binding transcription factor <scp>TGA</scp> 3 elevates <i><scp>LCD</scp></i> expression and H ₂ S production to bolster Cr ⁶⁺ tolerance in Arabidopsis. Plant Journal, 2017, 91, 1038-1050.	5.7	79
34	ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biology, 2017, 15, e2001272.	5.6	81
35	DNA methylome of the 20-gigabase Norway spruce genome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8106-E8113.	7.1	85
36	ldentification and functional characterization of soybean root hair micro <scp>RNA</scp> s expressed in response to <i><scp>B</scp>radyrhizobium japonicum</i> infection. Plant Biotechnology Journal, 2016, 14, 332-341.	8.3	40

#	Article	IF	CITATIONS
37	MTHFD1 controls DNA methylation in Arabidopsis. Nature Communications, 2016, 7, 11640.	12.8	61
38	Coordination of MicroRNAs, PhasiRNAs, and NB‣RR Genes in Response to a Plant Pathogen: Insights from Analyses of a Set of Soybean Rps Gene Nearâ€ŀsogenic Lines. Plant Genome, 2015, 8, eplantgenome2014.09.0044.	2.8	31
39	Spatiotemporally dynamic, cell-type–dependent premeiotic and meiotic phasiRNAs in maize anthers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3146-3151.	7.1	310
40	Distinct and Cooperative Activities of HESO1 and URT1 Nucleotidyl Transferases in MicroRNA Turnover in Arabidopsis. PLoS Genetics, 2015, 11, e1005119.	3.5	125
41	Identification of micro RNA s and their mRNA targets during soybean nodule development: functional analysis of the role of miR393jâ€3p in soybean nodulation. New Phytologist, 2015, 207, 748-759.	7.3	82
42	CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the United States of America, 2015, 112, 13729-13734.	7.1	129
43	A One Precursor One siRNA Model for Pol IV-Dependent siRNA Biogenesis. Cell, 2015, 163, 445-455.	28.9	260
44	Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3877-3882.	7.1	181
45	An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes. Plant Cell, 2014, 26, 4584-4601.	6.6	163
46	miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature, 2014, 508, 411-415.	27.8	331
47	Reprint of: Construction of Specific Parallel Amplification of RNA Ends (SPARE) libraries for the systematic identification of plant microRNA processing intermediates. Methods, 2014, 67, 36-44.	3.8	0
48	Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing. Methods, 2014, 67, 84-90.	3.8	89
49	Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis. Molecular Cell, 2014, 55, 694-707.	9.7	283
50	Roles of small <scp>RNA</scp> s in soybean defense against <i><scp>P</scp>hytophthora sojae</i> infection. Plant Journal, 2014, 79, 928-940.	5.7	122
51	Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics, 2013, 14, 326.	2.8	49
52	Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Research, 2013, 23, 1675-1689.	5.5	110
53	The <i>Amborella</i> Genome and the Evolution of Flowering Plants. Science, 2013, 342, 1241089.	12.6	743
54	Construction of Specific Parallel Amplification of RNA Ends (SPARE) libraries for the systematic identification of plant microRNA processing intermediates. Methods, 2013, 64, 283-291.	3.8	10

#	Article	IF	CITATIONS
55	Biogenesis and function of rice small RNAs from non-coding RNA precursors. Current Opinion in Plant Biology, 2013, 16, 170-179.	7.1	83
56	Comprehensive Investigation of MicroRNAs Enhanced by Analysis of Sequence Variants, Expression Patterns, ARGONAUTE Loading, and Target Cleavage. Plant Physiology, 2013, 162, 1225-1245.	4.8	61
57	Plant MicroRNAs Display Differential 3' Truncation and Tailing Modifications That Are ARGONAUTE1 Dependent and Conserved Across Species. Plant Cell, 2013, 25, 2417-2428.	6.6	113
58	Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biology, 2013, 14, R145.	9.6	67
59	Deep Sequencing from hen1 Mutants to Identify Small RNA 3' Modifications. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 213-219.	1.1	8
60	RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats. Epigenetics, 2012, 7, 781-795.	2.7	69
61	Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant Journal, 2012, 69, 462-474.	5.7	289
62	The Arabidopsis Nucleotidyl Transferase HESO1ÂUridylates Unmethylated Small RNAs to Trigger Their Degradation. Current Biology, 2012, 22, 689-694.	3.9	187
63	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	27.8	1,166
64	MicroRNAs as master regulators of the plant <i>NB-LRR</i> defense gene family via the production of phased, <i>trans</i> -acting siRNAs. Genes and Development, 2011, 25, 2540-2553.	5.9	668
65	Massive Analysis of Rice Small RNAs: Mechanistic Implications of Regulated MicroRNAs and Variants for Differential Target RNA Cleavage Â. Plant Cell, 2011, 23, 4185-4207.	6.6	341
66	MicroRNA Processing: Battle of the Bulge. Current Biology, 2010, 20, R68-R70.	3.9	14
67	Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463, 763-768.	27.8	1,685
68	siRNAs compete with miRNAs for methylation by HEN1 in Arabidopsis. Nucleic Acids Research, 2010, 38, 5844-5850.	14.5	59
69	Conservation and divergence in eukaryotic DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9027-9028.	7.1	76
70	Distinct extremely abundant siRNAs associated with cosuppression in petunia. Rna, 2009, 15, 1965-1970.	3.5	93
71	Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Reports, 2009, 28, 469-480.	5.6	43
72	Short-Read Sequencing Technologies for Transcriptional Analyses. Annual Review of Plant Biology, 2009, 60, 305-333.	18.7	118

#	Article	IF	CITATIONS
73	The Cornucopia of Small RNAs in Plant Genomes. Rice, 2008, 1, 52-62.	4.0	7
74	Small RNA-Directed Epigenetic Natural Variation in Arabidopsis thaliana. PLoS Genetics, 2008, 4, e1000056.	3.5	112
75	Mutations in the Type II Protein Arginine Methyltransferase AtPRMT5 Result in Pleiotropic Developmental Defects in Arabidopsis. Plant Physiology, 2007, 144, 1913-1923.	4.8	99
76	SDG714, a Histone H3K9 Methyltransferase, Is Involved in Tos17 DNA Methylation and Transposition in Rice. Plant Cell, 2007, 19, 9-22.	6.6	162
77	ROR1/RPA2A, a Putative Replication Protein A2, Functions in Epigenetic Gene Silencing and in Regulation of Meristem Development in Arabidopsis. Plant Cell, 2005, 18, 85-103.	6.6	57