Zhi-Chao Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2498367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treeâ€Inspired Ultralong Hydroxyapatite Nanowiresâ€Based Multifunctional Aerogel with Vertically Aligned Channels for Continuous Flow Catalysis, Water Disinfection, and Solar Energyâ€Driven Water Purification. Advanced Functional Materials, 2022, 32, 2106978.	14.9	58
2	A scalable, low-cost and green strategy for the synthesis of ultralong hydroxyapatite nanowires using peanut oil. CrystEngComm, 2022, 24, 3208-3216.	2.6	3
3	Flexible photothermal biopaper comprising Cu2+-doped ultralong hydroxyapatite nanowires and black phosphorus nanosheets for accelerated healing of infected wound. Chemical Engineering Journal, 2022, 437, 135347.	12.7	20
4	Flexible nanocomposite paper with superior fire retardance, mechanical properties and electrical insulation by engineering ultralong hydroxyapatite nanowires and aramid nanofibers. Chemical Engineering Journal, 2022, 444, 136470.	12.7	24
5	Magnetic graphene oxide nanocomposites as an effective support for lactase immobilization with improved stability and enhanced photothermal enzymatic activity. New Journal of Chemistry, 2021, 45, 5939-5948.	2.8	6
6	Highly effective catalytic reduction of nitrobenzene compounds with gold nanoparticle-immobilized hydroxyapatite nanowire-sintered porous ceramic beads. New Journal of Chemistry, 2021, 45, 4601-4610.	2.8	9
7	Customized Cellulose Fiber Paper Enabled by an <i>In Situ</i> Growth of Ultralong Hydroxyapatite Nanowires. ACS Nano, 2021, 15, 5355-5365.	14.6	42
8	Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper. ACS Applied Materials & Interfaces, 2020, 12, 1339-1347.	8.0	38
9	Flexible Salt-Rejecting Photothermal Paper Based on Reduced Graphene Oxide and Hydroxyapatite Nanowires for High-Efficiency Solar Energy-Driven Vapor Generation and Stable Desalination. ACS Applied Materials & Interfaces, 2020, 12, 32556-32565.	8.0	95
10	Bioinspired fiberboard-and-mortar structural nanocomposite based on ultralong hydroxyapatite nanowires with high mechanical performance. Chemical Engineering Journal, 2020, 399, 125666.	12.7	18
11	A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination. Nanoscale, 2020, 12, 6717-6728.	5.6	72
12	Superhydrophobic Photothermal Paper Based on Ultralong Hydroxyapatite Nanowires for Controllable Light-Driven Self-Propelled Motion. ACS Sustainable Chemistry and Engineering, 2019, 7, 13226-13235.	6.7	41
13	Secret Paper with Vinegar as an Invisible Security Ink and Fire as a Decryption Key for Information Protection. Chemistry - A European Journal, 2019, 25, 10918-10925.	3.3	11
14	Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification. Carbon, 2019, 150, 233-243.	10.3	85
15	A magnetic nanofiber-based zwitterionic hydrophilic material for the selective capture and identification of glycopeptides. Nanoscale, 2019, 11, 10952-10960.	5.6	29
16	Portable and writable photoluminescent chalk for on-site information protection on arbitrary substrates. Chemical Engineering Journal, 2019, 369, 766-774.	12.7	19
17	Facile Fabrication of Magnetic Metal–Organic Framework Nanofibers for Specific Capture of Phosphorylated Peptides. ACS Sustainable Chemistry and Engineering, 2019, 7, 2245-2254	6.7	33
18	Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 13019-13027.	8.0	112

ZHI-CHAO XIONG

#	Article	IF	CITATIONS
19	Ultralong hydroxyapatite nanowire-based layered catalytic paper for highly efficient continuous flow reactions. Journal of Materials Chemistry A, 2018, 6, 5762-5773.	10.3	41
20	Fire Alarm Wallpaper Based on Fire-Resistant Hydroxyapatite Nanowire Inorganic Paper and Graphene Oxide Thermosensitive Sensor. ACS Nano, 2018, 12, 3159-3171.	14.6	155
21	Lowâ€Cost and Scaledâ€Up Production of Fluorineâ€Free, Substrateâ€Independent, Largeâ€Area Superhydrophobic Coatings Based on Hydroxyapatite Nanowire Bundles. Chemistry - A European Journal, 2018, 24, 416-424.	3.3	18
22	Bioinspired Macroscopic Ribbon Fibers with a Nacre-Mimetic Architecture Based on Highly Ordered Alignment of Ultralong Hydroxyapatite Nanowires. ACS Nano, 2018, 12, 12284-12295.	14.6	46
23	Flexible Fireâ€Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energyâ€Driven Water Purification. Small, 2018, 14, e1803387.	10.0	136
24	Recyclable, Fire-Resistant, Superhydrophobic, and Magnetic Paper Based on Ultralong Hydroxyapatite Nanowires for Continuous Oil/Water Separation and Oil Collection. ACS Sustainable Chemistry and Engineering, 2018, 6, 10140-10150.	6.7	68
25	Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation. ACS Applied Materials & Interfaces, 2017, 9, 11045-11053.	8.0	13
26	Hydroxyapatite Nanowire-Based All-Weather Flexible Electrically Conductive Paper with Superhydrophobic and Flame-Retardant Properties. ACS Applied Materials & Interfaces, 2017, 9, 39534-39548.	8.0	54
27	Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications. ACS Applied Materials & Interfaces, 2017, 9, 25455-25464.	8.0	68
28	Flexible hydroxyapatite ultralong nanowire-based paper for highly efficient and multifunctional air filtration. Journal of Materials Chemistry A, 2017, 5, 17482-17491.	10.3	114
29	Ultralong Hydroxyapatite Nanowires-Based Paper Co-Loaded with Silver Nanoparticles and Antibiotic for Long-Term Antibacterial Benefit. ACS Applied Materials & Interfaces, 2017, 9, 22212-22222.	8.0	74
30	Hydroxyapatite Nanowires@Metal–Organic Framework Core/Shell Nanofibers: Templated Synthesis, Peroxidaseâ€Like Activity, and Derived Flexible Recyclable Test Paper. Chemistry - A European Journal, 2017, 23, 3328-3337.	3.3	51
31	Highly Flexible Superhydrophobic and Fire-Resistant Layered Inorganic Paper. ACS Applied Materials & Interfaces, 2016, 8, 34715-34724.	8.0	111
32	Oneâ€Step Synthesis of Silver Nanoparticleâ€Decorated Hydroxyapatite Nanowires for the Construction of Highly Flexible Freeâ€Standing Paper with High Antibacterial Activity. Chemistry - A European Journal, 2016, 22, 11224-11231.	3.3	43
33	Facile Preparation of Core–Shell Magnetic Metal–Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides. ACS Applied Materials & Interfaces, 2015, 7, 16338-16347.	8.0	179
34	Facile Preparation of Core–Shell Magnetic Metal–Organic Framework Nanospheres for the Selective Enrichment of Endogenous Peptides. Chemistry - A European Journal, 2014, 20, 7389-7395.	3.3	67