
Marcin PorÄBA

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2497424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caspase Substrates and Inhibitors. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008680-a008680.	5.5	155
2	Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2518-2523.	7.1	148
3	Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nature Protocols, 2017, 12, 2189-2214.	12.0	80
4	Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. Journal of Biological Chemistry, 2018, 293, 7058-7067.	3.4	74
5	Proteaseâ€activated prodrugs: strategies, challenges, and future directions. FEBS Journal, 2020, 287, 1936-1969.	4.7	71
6	Small Molecule Active Site Directed Tools for Studying Human Caspases. Chemical Reviews, 2015, 115, 12546-12629.	47.7	68
7	Selective imaging of cathepsinÂL in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9, 2113-2129.	7.4	64
8	Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum. PLoS ONE, 2012, 7, e31938.	2.5	64
9	Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease. Antiviral Research, 2017, 139, 88-94.	4.1	55
10	Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Scientific Reports, 2017, 7, 43135.	3.3	51
11	Emerging challenges in the design of selective substrates, inhibitors and activityâ€based probes for indistinguishable proteases. FEBS Journal, 2017, 284, 1518-1539.	4.7	50
12	Design of a Selective Substrate and Activity Based Probe for Human Neutrophil Serine Protease 4. PLoS ONE, 2015, 10, e0132818.	2.5	49
13	Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chemical Science, 2019, 10, 8461-8477.	7.4	47
14	Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chemical Biology, 2016, 23, 1023-1035.	5.2	45
15	Caspase selective reagents for diagnosing apoptotic mechanisms. Cell Death and Differentiation, 2019, 26, 229-244.	11.2	38
16	Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C. Amino Acids, 2014, 46, 931-943.	2.7	37
17	Positional Scanning Substrate Combinatorial Library (PS-SCL) Approach to Define Caspase Substrate Specificity. Methods in Molecular Biology, 2014, 1133, 41-59.	0.9	36
18	Barrel-shaped ClpP Proteases Display Attenuated Cleavage Specificities. ACS Chemical Biology, 2016, 11, 389-399.	3.4	35

Marcin Porä™ba

#	Article	IF	CITATIONS
19	Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. Journal of Biological Chemistry, 2020, 295, 11292-11302.	3.4	33
20	The new esters derivatives of betulin and betulinic acid in epidermoid squamous carcinoma treatment – In vitro studies. Biomedicine and Pharmacotherapy, 2015, 72, 91-97.	5.6	28
21	Selective Substrates and Activity-Based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples. Journal of Medicinal Chemistry, 2018, 61, 5222-5234.	6.4	28
22	Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. Journal of the American Chemical Society, 2020, 142, 16704-16715.	13.7	27
23	Insights into ClpXP proteolysis: heterooligomerization and partial deactivation enhance chaperone affinity and substrate turnover in Listeria monocytogenes. Chemical Science, 2017, 8, 1592-1600.	7.4	24
24	Recent advances in the development of legumain-selective chemical probes and peptide prodrugs. Biological Chemistry, 2019, 400, 1529-1550.	2.5	24
25	Probes to Monitor Activity of the Paracaspase MALT1. Chemistry and Biology, 2015, 22, 139-147.	6.0	23
26	Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease. Journal of Biological Chemistry, 2015, 290, 24806-24815.	3.4	22
27	Potent and selective caspase-2 inhibitor prevents MDM-2 cleavage in reversine-treated colon cancer cells. Cell Death and Differentiation, 2019, 26, 2695-2709.	11.2	22
28	Glycosylation is important for legumain localization and processing to active forms but not for cystatin E/M inhibitory functions. Biochimie, 2017, 139, 27-37.	2.6	21
29	S1 pocket fingerprints of human and bacterial methionine aminopeptidases determined using fluorogenic libraries of substrates and phosphorus based inhibitors. Biochimie, 2012, 94, 704-710.	2.6	19
30	Legumain is upregulated in acute cardiovascular events and associated with improved outcome - potentially related to anti-inflammatory effects on macrophages. Atherosclerosis, 2020, 296, 74-82.	0.8	14
31	Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses. Antiviral Research, 2020, 175, 104731.	4.1	14
32	Fluorescent activity-based probe for the selective detection of Factor VII activating protease (FSAP) in human plasma. Thrombosis Research, 2019, 182, 124-132.	1.7	10
33	Biochemical Characterization and Substrate Specificity of Autophagin-2 from the Parasite Trypanosoma cruzi. Journal of Biological Chemistry, 2015, 290, 28231-28244.	3.4	7
34	Characterization ofP. falciparumdipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptideâ€based substrates and covalent inhibitors. FEBS Journal, 2019, 286, 3998-4023.	4.7	7
35	Exploring the prime site in caspases as a novel chemical strategy for understanding the mechanisms of cell death: a proof of concept study on necroptosis in cancer cells. Cell Death and Differentiation, 2020, 27, 451-465.	11.2	7
36	Development of an advanced nanoformulation for the intracellular delivery of a caspase-3 selective activity-based probe. Nanoscale, 2019, 11, 742-751.	5.6	6

#	Article	IF	CITATIONS
37	Engineering caspase 7 as an affinity reagent to capture proteolytic products. FEBS Journal, 2021, 288, 1259-1270.	4.7	0