## Jose M Carmena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2497257/publications.pdf Version: 2024-02-01



LOSE M CADMENA

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Diverse operant control of different motor cortex populations during learning. Current Biology, 2022, 32, 1616-1622.e5.                                                         | 3.9  | 4         |
| 2  | Left hemisphere dominance for bilateral kinematic encoding in the human brain. ELife, 2022, 11, .                                                                               | 6.0  | 20        |
| 3  | Functional Neuroscience: Cortical Control of Limb Prostheses. , 2022, , 1474-1487.                                                                                              |      | Ο         |
| 4  | Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque. Cell Reports, 2021, 35, 109239.                                              | 6.4  | 35        |
| 5  | Skilled independent control of individual motor units via a non-invasive neuromuscular–machine<br>interface. Journal of Neural Engineering, 2021, 18, 066019.                   | 3.5  | 28        |
| 6  | Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals. PLoS Computational Biology, 2021, 17, e1009615.                 | 3.2  | 3         |
| 7  | Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes.<br>Current Opinion in Neurobiology, 2020, 60, 145-154.                            | 4.2  | 45        |
| 8  | A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nature Biomedical Engineering, 2020, 4, 207-222.             | 22.5 | 278       |
| 9  | A Sub-mm <sup>3</sup> Ultrasonic Free-Floating Implant for Multi-Mote Neural Recording. IEEE Journal of Solid-State Circuits, 2019, 54, 3017-3030.                              | 5.4  | 83        |
| 10 | Neural Correlates of Control of a Kinematically Redundant Brain-Machine Interface*. , 2019, , .                                                                                 |      | 3         |
| 11 | Large-Scale Neural Consolidation in BMI Learning*. , 2019, , .                                                                                                                  |      | 3         |
| 12 | Local network coordination supports neuroprosthetic control. , 2019, , .                                                                                                        |      | 1         |
| 13 | 17.5 A 0.8mm <sup>3</sup> Ultrasonic Implantable Wireless Neural Recording System With Linear AM<br>Backscattering. , 2019, , .                                                 |      | 22        |
| 14 | A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nature Biomedical Engineering, 2019, 3, 15-26. | 22.5 | 164       |
| 15 | Evidence for a neural law of effect. Science, 2018, 359, 1024-1029.                                                                                                             | 12.6 | 44        |
| 16 | Volitional Modulation of Primary Visual Cortex Activity Requires the Basal Ganglia. Neuron, 2018, 97, 1356-1368.e4.                                                             | 8.1  | 44        |
| 17 | Recent advances in neural dust: towards a neural interface platform. Current Opinion in Neurobiology, 2018, 50, 64-71.                                                          | 4.2  | 81        |
| 18 | StimDust: A 6.5mm <sup>3</sup> , wireless ultrasonic peripheral nerve stimulator with 82% peak chip efficiency. , 2018, , .                                                     |      | 49        |

Jose M Carmena

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Functional Neuroscience: Cortical Control of Limb Prostheses. , 2018, , 1-13.                                                                                                                                                                |      | Ο         |
| 20 | Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications, 2017, 8, 13825.                                                                                                                                     | 12.8 | 88        |
| 21 | Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful<br>Control. Neuron, 2017, 93, 955-970.e5.                                                                                                           | 8.1  | 86        |
| 22 | Reliable Next-Generation Cortical Interfaces for Chronic Brain–Machine Interfaces and Neuroscience.<br>Proceedings of the IEEE, 2017, 105, 73-82.                                                                                            | 21.3 | 44        |
| 23 | Caudate Microstimulation Increases Value of Specific Choices. Current Biology, 2017, 27, 3375-3383.e3.                                                                                                                                       | 3.9  | 21        |
| 24 | Neurofeedback Control in Parkinsonian Patients Using Electrocorticography Signals Accessed<br>Wirelessly With a Chronic, Fully Implanted Device. IEEE Transactions on Neural Systems and<br>Rehabilitation Engineering, 2017, 25, 1715-1724. | 4.9  | 34        |
| 25 | Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 750-760.                                                        | 4.9  | 13        |
| 26 | An implantable 700î¼W 64-channel neuromodulation IC for simultaneous recording and stimulation with rapid artifact recovery. , 2017, , .                                                                                                     |      | 39        |
| 27 | Blind parallel interrogation of ultrasonic neural dust motes based on canonical polyadic decomposition: A simulation study. , 2017, , .                                                                                                      |      | 0         |
| 28 | Four ethical priorities for neurotechnologies and Al. Nature, 2017, 551, 159-163.                                                                                                                                                            | 27.8 | 267       |
| 29 | Beta band oscillations in motor cortex reflect neural population signals that delay movement onset.<br>ELife, 2017, 6, .                                                                                                                     | 6.0  | 108       |
| 30 | Modeling distinct sources of neural variability driving neuroprosthetic control. , 2016, 2016, 3068-3071.                                                                                                                                    |      | 0         |
| 31 | Design of a Passive Upper Limb Exoskeleton for Macaque Monkeys. Journal of Dynamic Systems,<br>Measurement and Control, Transactions of the ASME, 2016, 138, .                                                                               | 1.6  | 4         |
| 32 | Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust. Neuron, 2016, 91, 529-539.                                                                                                                                  | 8.1  | 417       |
| 33 | Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point<br>Process Filtering. PLoS Computational Biology, 2016, 12, e1004730.                                                                       | 3.2  | 94        |
| 34 | Ultrasonic beamforming system for interrogating multiple implantable sensors. , 2015, 2015, 2673-6.                                                                                                                                          |      | 13        |
| 35 | Disentangling Multidimensional Spatio-Temporal Data into Their Common and Aberrant Responses.<br>PLoS ONE, 2015, 10, e0121607.                                                                                                               | 2.5  | 1         |
| 36 | Enabling closed-loop neurostimulation research with downloadable firmware upgrades. , 2015, , .                                                                                                                                              |      | 16        |

JOSE M CARMENA

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A 4.78 mm 2 Fully-Integrated Neuromodulation SoC Combining 64 Acquisition Channels With Digital<br>Compression and Simultaneous Dual Stimulation. IEEE Journal of Solid-State Circuits, 2015, 50,<br>1038-1047. | 5.4  | 75        |
| 38 | Backscattering Neural Tags for Wireless Brain-Machine Interface Systems. IEEE Transactions on Antennas and Propagation, 2015, 63, 719-726.                                                                      | 5.1  | 48        |
| 39 | Changes in reaching reaction times due to volitional modulation of beta oscillations. , 2015, , .                                                                                                               |      | 1         |
| 40 | Representation of Muscle Synergies in the Primate Brain. Journal of Neuroscience, 2015, 35, 12615-12624.                                                                                                        | 3.6  | 151       |
| 41 | Accelerating Submovement Decomposition With Search-Space Reduction Heuristics. IEEE Transactions on Biomedical Engineering, 2015, 62, 2508-2515.                                                                | 4.2  | 6         |
| 42 | Neural oscillations: beta band activity across motor networks. Current Opinion in Neurobiology, 2015, 32, 60-67.                                                                                                | 4.2  | 98        |
| 43 | A Minimally Invasive 64-Channel Wireless μECoG Implant. IEEE Journal of Solid-State Circuits, 2015, 50, 344-359.                                                                                                | 5.4  | 295       |
| 44 | Model validation of untethered, ultrasonic neural dust motes for cortical recording. Journal of<br>Neuroscience Methods, 2015, 244, 114-122.                                                                    | 2.5  | 140       |
| 45 | Design of a neural decoder by sensory prediction and error correction. , 2014, , .                                                                                                                              |      | 0         |
| 46 | Combining Decoder Design and Neural Adaptation in Brain-Machine Interfaces. Neuron, 2014, 84, 665-680.                                                                                                          | 8.1  | 144       |
| 47 | A design of neural decoder by reducing discrepancy between Manual Control (MC) and Brain Control (BC). , 2014, , .                                                                                              |      | 2         |
| 48 | Designing Dynamical Properties of Brain–Machine Interfaces to Optimize Task-Specific Performance.<br>IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 911-920.                     | 4.9  | 28        |
| 49 | Subject-specific modulation of local field potential spectral power during brain–machine interface control in primates. Journal of Neural Engineering, 2014, 11, 026002.                                        | 3.5  | 62        |
| 50 | Volitional modulation of optically recorded calcium signals during neuroprosthetic learning.<br>Nature Neuroscience, 2014, 17, 807-809.                                                                         | 14.8 | 133       |
| 51 | Continuous Closed-Loop Decoder Adaptation with a Recursive Maximum Likelihood Algorithm Allows<br>for Rapid Performance Acquisition in Brain-Machine Interfaces. Neural Computation, 2014, 26, 1811-1839.       | 2.2  | 35        |
| 52 | Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control.<br>Neuron, 2014, 82, 1380-1393.                                                                                   | 8.1  | 216       |
| 53 | Miniature implantable and wearable on-body antennas: towards the new era of wireless body-centric systems [antenna applications corner]. IEEE Antennas and Propagation Magazine, 2014, 56, 271-291.             | 1.4  | 122       |
| 54 | Muscle synergies evoked by microstimulation are preferentially encoded during behavior. Frontiers in<br>Computational Neuroscience, 2014, 8, 20.                                                                | 2.1  | 56        |

JOSE M CARMENA

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Temporally Precise Cell-Specific Coherence Develops in Corticostriatal Networks during Learning.<br>Neuron, 2013, 79, 865-872.                                               | 8.1 | 116       |
| 56 | Measurement of Wireless Link for Brain–Machine Interface Systems Using Human-Head Equivalent<br>Liquid. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1307-1310. | 4.0 | 18        |
| 57 | Comparison of neural activity during closed-loop control of spike- or LFP-based brain-machine interfaces. , 2013, , .                                                        |     | 1         |
| 58 | Optimal feedback-controlled point process decoder for adaptation and assisted training in brain-machine interfaces. , 2013, , .                                              |     | 7         |
| 59 | Electromagnetic modelling and measurement of antennas for wireless brain-machine interface systems. , 2013, , .                                                              |     | 5         |
| 60 | A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 ÂμW Wireless Neural Sensor. IEEE Journal of<br>Solid-State Circuits, 2013, 48, 960-970.                                    | 5.4 | 154       |
| 61 | Design and Analysis of Closed-Loop Decoder Adaptation Algorithms for Brain-Machine Interfaces.<br>Neural Computation, 2013, 25, 1693-1731.                                   | 2.2 | 80        |
| 62 | Advances in Neuroprosthetic Learning and Control. PLoS Biology, 2013, 11, e1001561.                                                                                          | 5.6 | 104       |
| 63 | Function Identification in Neuron Populations via Information Bottleneck. Entropy, 2013, 15, 1587-1608.                                                                      | 2.2 | 10        |
| 64 | Low-rank representation of neural activity and detection of submovements. , 2013, , .                                                                                        |     | 2         |
| 65 | Volitional phase control of neural oscillations using a brain-machine interface. , 2013, , .                                                                                 |     | 0         |
| 66 | Dynamic changes of rodent somatosensory barrel cortex are correlated with learning a novel conditioned stimulus. Journal of Neurophysiology, 2013, 109, 2585-2595.           | 1.8 | 8         |
| 67 | Physical principles for scalable neural recording. Frontiers in Computational Neuroscience, 2013, 7, 137.                                                                    | 2.1 | 215       |
| 68 | Creating new functional circuits for action via brain-machine interfaces. Frontiers in Computational<br>Neuroscience, 2013, 7, 157.                                          | 2.1 | 39        |
| 69 | Brain–machine interfaces and transcranial stimulation. Handbook of Clinical Neurology / Edited By P J<br>Vinken and G W Bruyn, 2012, 109, 435-444.                           | 1.8 | 3         |
| 70 | Detecting event-related changes of multivariate phase coupling in dynamic brain networks. Journal of<br>Neurophysiology, 2012, 107, 2020-2031.                               | 1.8 | 23        |
| 71 | Task-Dependent Changes in Cross-Level Coupling between Single Neurons and Oscillatory Activity in<br>Multiscale Networks. PLoS Computational Biology, 2012, 8, e1002809.     | 3.2 | 52        |
| 72 | Dynamically Repairing and Replacing Neural Networks: Using Hybrid Computational and Biological Tools. IEEE Pulse, 2012, 3, 57-59.                                            | 0.3 | 13        |

Jose M Carmena

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature, 2012, 483, 331-335.                                                                                                                                     | 27.8 | 323       |
| 74 | Assessing functional connectivity of neural ensembles using directed information. Journal of Neural Engineering, 2012, 9, 026004.                                                                                                                        | 3.5  | 35        |
| 75 | Microstimulation Activates a Handful of Muscle Synergies. Neuron, 2012, 76, 1071-1077.                                                                                                                                                                   | 8.1  | 238       |
| 76 | Closed-Loop Decoder Adaptation on Intermediate Time-Scales Facilitates Rapid BMI Performance<br>Improvements Independent of Decoder Initialization Conditions. IEEE Transactions on Neural Systems<br>and Rehabilitation Engineering, 2012, 20, 468-477. | 4.9  | 141       |
| 77 | Redundant information encoding in primary motor cortex during natural and prosthetic motor control. Journal of Computational Neuroscience, 2012, 32, 555-561.                                                                                            | 1.0  | 21        |
| 78 | Redundant information encoding in primary motor cortex during motor tasks. , 2011, , .                                                                                                                                                                   |      | 0         |
| 79 | Adaptive Kalman filtering for closed-loop Brain-Machine Interface systems. , 2011, , .                                                                                                                                                                   |      | 24        |
| 80 | Reversible large-scale modification of cortical networks during neuroprosthetic control. Nature<br>Neuroscience, 2011, 14, 662-667.                                                                                                                      | 14.8 | 237       |
| 81 | A statistical description of neural ensemble dynamics. Frontiers in Computational Neuroscience, 2011, 5, 52.                                                                                                                                             | 2.1  | 11        |
| 82 | In Vitro and In Vivo Evaluation of PEDOT Microelectrodes for Neural Stimulation and Recording. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 307-316.                                                                    | 4.9  | 258       |
| 83 | Active Sensing of Target Location Encoded by Cortical Microstimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 317-324.                                                                                           | 4.9  | 56        |
| 84 | System Architecture for Stiffness Control in Brain–Machine Interfaces. IEEE Transactions on Systems,<br>Man and Cybernetics, Part A: Systems and Humans, 2010, 40, 732-742.                                                                              | 2.9  | 7         |
| 85 | Invasive or Noninvasive: Understanding Brain-Machine Interface Technology [Conversations in BME.<br>IEEE Engineering in Medicine and Biology Magazine, 2010, 29, 16-22.                                                                                  | 0.8  | 91        |
| 86 | Investigating Neural Correlates of Behavior in Freely Behaving Rodents Using Inertial Sensors.<br>Journal of Neurophysiology, 2010, 104, 569-575.                                                                                                        | 1.8  | 42        |
| 87 | Learning in Closed-Loop Brain–Machine Interfaces: Modeling and Experimental Validation. IEEE<br>Transactions on Systems, Man, and Cybernetics, 2010, 40, 1387-1397.                                                                                      | 5.0  | 46        |
| 88 | Neural Correlates of Skill Acquisition with a Cortical Brain–Machine Interface. Journal of Motor<br>Behavior, 2010, 42, 355-360.                                                                                                                         | 0.9  | 45        |
| 89 | Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17356-17361.                                                    | 7.1  | 251       |
| 90 | Behavioral modulation of stimulus-evoked oscillations in barrel cortex of alert rats. Frontiers in Integrative Neuroscience, 2009, 3, 10.                                                                                                                | 2.1  | 17        |

JOSE M CARMENA

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A model of motor learning in closed-loop brain-machine interfaces: Predicting neural tuning changes. , 2009, , .                                                                                               |     | 0         |
| 92  | Cortical Representation of Ipsilateral Arm Movements in Monkey and Man. Journal of Neuroscience, 2009, 29, 12948-12956.                                                                                        | 3.6 | 134       |
| 93  | Emergence of a Stable Cortical Map for Neuroprosthetic Control. PLoS Biology, 2009, 7, e1000153.                                                                                                               | 5.6 | 469       |
| 94  | Editorial: Developing the Next Generation of Hybrid Neuroprosthetic Systems. IEEE Transactions on<br>Biomedical Engineering, 2009, 56, 3-5.                                                                    | 4.2 | 5         |
| 95  | PEDOT coated microelectrode arrays for chronic neural recording and stimulation. , 2009, , .                                                                                                                   |     | 14        |
| 96  | Stiffness control of 2-DOF exoskeleton for brain-machine interfaces. , 2008, , .                                                                                                                               |     | 2         |
| 97  | Cortical Modulations Increase in Early Sessions with Brain-Machine Interface. PLoS ONE, 2007, 2, e619.                                                                                                         | 2.5 | 54        |
| 98  | The Muscle Activation Method: An Approach to Impedance Control of Brain-Machine Interfaces<br>Through a Musculoskeletal Model of the Arm. IEEE Transactions on Biomedical Engineering, 2007, 54,<br>1520-1529. | 4.2 | 36        |
| 99  | Orbitofrontal Ensemble Activity Monitors Licking and Distinguishes Among Natural Rewards. Journal of Neurophysiology, 2006, 95, 119-133.                                                                       | 1.8 | 97        |
| 100 | Continuous Shared Control for Stabilizing Reaching and Grasping With Brain-Machine Interfaces. IEEE<br>Transactions on Biomedical Engineering, 2006, 53, 1164-1173.                                            | 4.2 | 101       |
| 101 | Cortical Ensemble Adaptation to Represent Velocity of an Artificial Actuator Controlled by a<br>Brain-Machine Interface. Journal of Neuroscience, 2005, 25, 4681-4693.                                         | 3.6 | 266       |
| 102 | Stable Ensemble Performance with Single-Neuron Variability during Reaching Movements in Primates.<br>Journal of Neuroscience, 2005, 25, 10712-10716.                                                           | 3.6 | 139       |
| 103 | Ascertaining the Importance of Neurons to Develop Better Brain-Machine Interfaces. IEEE Transactions on Biomedical Engineering, 2004, 51, 943-953.                                                             | 4.2 | 95        |
| 104 | Transmission Latencies in a Telemetry-Linked Brain-Machine Interface. IEEE Transactions on Biomedical Engineering, 2004, 51, 919-924.                                                                          | 4.2 | 24        |
| 105 | Narrowband target tracking using a biomimetic sonarhead. Robotics and Autonomous Systems, 2004, 46, 247-259.                                                                                                   | 5.1 | 5         |
| 106 | Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery, 2004, 55, 27-35; discussion 35-8.                                           | 1.1 | 35        |
| 107 | Chronic, multisite, multielectrode recordings in macaque monkeys. Proceedings of the National<br>Academy of Sciences of the United States of America, 2003, 100, 11041-11046.                                  | 7.1 | 736       |
| 108 | Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates. PLoS Biology, 2003, 1, e42.                                                                                               | 5.6 | 1,427     |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Estimating Doppler Shift Using Bat-Inspired Cochlear Filter Bank Models: A Comparison of Methods for Echoes from Single and Multiple Reflectors. Adaptive Behavior, 2001, 9, 241-261. | 1.9 | 2         |