

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2497252/publications.pdf Version: 2024-02-01

LII R-P

#	Article	IF	CITATIONS
1	Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40, 1370-1374.	21.4	706
2	Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14400-14405.	7.1	452
3	Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 2013, 4, 2640.	12.8	423
4	The evolving story of rice evolution. Plant Science, 2008, 174, 394-408.	3.6	356
5	Gene Flow from Cultivated Rice (Oryza sativa) to its Weedy and Wild Relatives. Annals of Botany, 2004, 93, 67-73.	2.9	299
6	Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biological Invasions, 2007, 9, 245-256.	2.4	212
7	Crop Wild Relatives—Undervalued, Underutilized and under Threat?. BioScience, 2011, 61, 559-565.	4.9	202
8	Gene Flow from Genetically Modified Rice and Its Environmental Consequences. BioScience, 2005, 55, 669.	4.9	183
9	Introgression of Crop Alleles into Wild or Weedy Populations. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 325-345.	8.3	169
10	Genetic Diversity and Origin of Weedy Rice (Oryza sativa f. spontanea) Populations Found in North-eastern China Revealed by Simple Sequence Repeat (SSR) Markers. Annals of Botany, 2006, 98, 1241-1252.	2.9	159
11	Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytologist, 2003, 157, 657-665.	7.3	152
12	Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnLâ€F sequences. New Phytologist, 2006, 170, 411-420.	7.3	148
13	Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theoretical and Applied Genetics, 2003, 107, 1492-1499.	3.6	118
14	Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon). New Phytologist, 2002, 153, 289-296.	7.3	111
15	A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theoretical and Applied Genetics, 2003, 108, 113-120.	3.6	103
16	RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biology, 2008, 8, 100.	3.6	98
17	Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnology Advances, 2009, 27, 1083-1091.	11.7	96
18	Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation, 2003, 12, 637-645.	2.6	91

#	Article	IF	CITATIONS
19	Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytologist, 2007, 173, 346-353.	7.3	80
20	Fitness Estimation through Performance Comparison of F1 Hybrids with their Parental Species Oryza rufipogon and O. sativa. Annals of Botany, 2004, 93, 311-316.	2.9	72
21	Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing. New Phytologist, 2005, 168, 559-566.	7.3	69
22	Genetic differentiation of wild relatives of rice as assessed by RFLP analysis. Theoretical and Applied Genetics, 2002, 106, 101-106.	3.6	68
23	Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Progress in Natural Science: Materials International, 2009, 19, 1241-1252.	4.4	66
24	A novel 5â€enolpyruvoylshikimateâ€3â€phosphate (<scp>EPSP</scp>) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (<i><scp>O</scp>ryza sativa</i>) without herbicide. New Phytologist, 2014, 202, 679-688.	7.3	66
25	Evidences of introgression from cultivated rice to OryzaÂrufipogon (Poaceae) populations based on SSR fingerprinting: implications for wild rice differentiation and conservation. Evolutionary Ecology, 2006, 20, 501-522.	1.2	64
26	Role of sexual reproduction in the spread of an invasive clonal plant Solidago canadensis revealed using intersimple sequence repeat markers. Plant Species Biology, 2006, 21, 13-18.	1.0	63
27	Genetic diversity and conservation of common wild rice (<i>Oryza rufipogon</i>) in China. Plant Species Biology, 2005, 20, 83-92.	1.0	60
28	Identification and genetic relationships of kenaf (Hibiscus cannabinus L.) germplasm revealed by AFLP analysis. Genetic Resources and Crop Evolution, 2004, 51, 393-401.	1.6	56
29	Was Asian Rice (Oryza sativa) Domesticated More Than Once?. Rice, 2008, 1, 16-24.	4.0	55
30	Yield benefit and underlying cost of insect-resistance transgenic rice: Implication in breeding and deploying transgenic crops. Field Crops Research, 2010, 118, 215-220.	5.1	54
31	Conspecific Crop-Weed Introgression Influences Evolution of Weedy Rice (Oryza sativa f. spontanea) across a Geographical Range. PLoS ONE, 2011, 6, e16189.	2.5	54
32	Sequence polymorphisms in wild, weedy, and cultivated rice suggest seedâ€shattering locus <i>sh4</i> played a minor role in <scp>A</scp> sian rice domestication. Ecology and Evolution, 2012, 2, 2106-2113.	1.9	54
33	A phylogeny of the rice tribe Oryzeae (Poaceae) based on <i>matK</i> sequence data. American Journal of Botany, 2002, 89, 1967-1972.	1.7	53
34	Pollen flow of cultivated rice measured under experimental conditions. Biodiversity and Conservation, 2004, 13, 579-590.	2.6	53
35	Association between chemical and genetic variation ofVitex rotundifolia populations from different locations in China: its implication for quality control of medicinal plants. Biomedical Chromatography, 2007, 21, 967-975.	1.7	53
36	Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop–weed hybrids of rice. Evolutionary Applications, 2011, 4, 672-684.	3.1	51

#	Article	IF	CITATIONS
37	Rapid evolutionary divergence and ecotypic diversification of germination behavior in weedy rice populations. New Phytologist, 2011, 191, 1119-1127.	7.3	50
38	Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. Journal of Systematics and Evolution, 2014, 52, 697-705.	3.1	49
39	Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation. New Phytologist, 2003, 159, 513-519.	7.3	48
40	Effects of insectâ€resistance transgenes on fecundity in rice (<i>Oryza sativa</i> , Poaceae): a test for underlying costs. American Journal of Botany, 2006, 93, 94-101.	1.7	46
41	Conserving Traditional Rice Varieties through Management for Crop Diversity. BioScience, 2003, 53, 158.	4.9	45
42	Performance of Hybrids between Weedy Rice and Insectâ€resistant Transgenic Rice under Field Experiments: Implication for Environmental Biosafety Assessment. Journal of Integrative Plant Biology, 2009, 51, 1138-1148.	8.5	44
43	Duplication and independent selection of cell-wall invertase genes CIF1 and OsCIN1 during rice evolution and domestication. BMC Evolutionary Biology, 2010, 10, 108.	3.2	44
44	Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica). Plant Cell Reports, 2012, 31, 1625-1635.	5.6	44
45	Genomic Clues for Crop–Weed Interactions and Evolution. Trends in Plant Science, 2018, 23, 1102-1115.	8.8	44
46	Editorial: Crop Breeding for Drought Resistance. Frontiers in Plant Science, 2019, 10, 314.	3.6	44
47	Genomic groups, morphology, and sectional delimitation in EurasianElymus (Poaceae, Triticeae). Plant Systematics and Evolution, 1992, 180, 1-13.	0.9	42
48	An Unusual Posttranscriptional Processing in Two Betaine Aldehyde Dehydrogenase Loci of Cereal Crops Directed by Short, Direct Repeats in Response to Stress Conditions. Plant Physiology, 2007, 143, 1929-1942.	4.8	42
49	RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Molecular Biology, 2014, 86, 443-454.	3.9	42
50	Cytogenetic studies of progeny from the intergeneric crosses <i>Elymus</i> × <i>Hordeun</i> and <i>Elymus</i> × <i>Secale</i> . Genome, 1990, 33, 425-432.	2.0	41
51	Enhanced yield performance of Bt rice under target-insect attacks: implications for field insect management. Transgenic Research, 2011, 20, 655-664.	2.4	41
52	Title is missing!. Genetic Resources and Crop Evolution, 1997, 44, 175-183.	1.6	39
53	Intergeneric hybridization between Hordeum and Asiatic Elymus. Hereditas, 1990, 112, 109-116.	1.4	39
54	Conserving biodiversity of soybean gene pool in the biotechnology era. Plant Species Biology, 2004, 19, 115-125.	1.0	38

#	Article	IF	CITATIONS
55	Introgression from cultivated rice influences genetic differentiation of weedy rice populations at a local spatial scale. Theoretical and Applied Genetics, 2012, 124, 309-322.	3.6	38
56	Genetic Differentiation Revealed by Selective Loci of Drought-Responding EST-SSRs between Upland and Lowland Rice in China. PLoS ONE, 2014, 9, e106352.	2.5	38
57	Fitness correlates of crop transgene flow into weedy populations: a case study of weedy rice in China and other examples. Evolutionary Applications, 2016, 9, 857-870.	3.1	38
58	Meiotic studies ofElymus nutans andE. jacquemontii (Poaceae, Triticeae) and their hybrids withPseudoroegneria spicata and seventeenElymus species. Plant Systematics and Evolution, 1993, 186, 193-212.	0.9	35
59	Phylogenetic Analysis of AA-genome Oryza Species (Poaceae) Based on Chloroplast, Mitochondrial, and Nuclear DNA Sequences. Biochemical Genetics, 2007, 45, 113-129.	1.7	35
60	A comparative study of competitiveness between different genotypes of weedy rice (<i>Oryza sativa</i>) Tj ETQ	9q0.0.0 rgB	T /Overlock 1
61	Title is missing!. Genetic Resources and Crop Evolution, 1997, 44, 17-23.	1.6	34
62	Differentiation and inter-genomic relationships among C, E and D genomes in the Oryzaofficinalis complex (Poaceae) as revealed by multicolor genomic in situ hybridization. Theoretical and Applied Genetics, 2001, 103, 197-203.	3.6	33
63	Identification of genome constitution of Oryza malampuzhaensis, O. minuta,and O. punctata by multicolor genomic in situ hybridization. Theoretical and Applied Genetics, 2001, 103, 204-211.	3.6	33
64	Comparative studies of genetic diversity in kenaf (Hibiscus cannabinus L.) varieties based on analysis of agronomic and RAPD data. Hereditas, 2002, 136, 231-239.	1.4	33
65	Short, direct repeats (SDRs)-mediated post-transcriptional processing of a transcription factor gene OsVP1 in rice (Oryza sativa). Journal of Experimental Botany, 2007, 58, 3811-3817.	4.8	32
66	Abundant Within-varietal Genetic Diversity in Rice Germplasm from Yunnan Province of China Revealed by SSR Fingerprints. Biochemical Genetics, 2007, 45, 789-801.	1.7	32
67	Asymmetric gene flow between traditional and hybrid rice varieties (Oryza sativa) indicated by nuclear simple sequence repeats and implications for germplasm conservation. New Phytologist, 2004, 163, 439-445.	7.3	31
68	Rapid and reliable identification of rice genomes by RFLP analysis of PCR-amplified <i>Adh</i> genes. Genome, 2001, 44, 1136-1142.	2.0	30

69	Title is missing!. Genetic Resources and Crop Evolution, 1998, 45, 205-214.	1.6	29
70	Modelling pollen-mediated gene flow in rice: risk assessment and management of transgene escape. Plant Biotechnology Journal, 2010, 8, 452-464.	8.3	29
71	Antioxidant activity of oligosaccharide ester extracted from <i>Polygala tenuifolia</i> roots in senescence-accelerated mice. Pharmaceutical Biology, 2010, 48, 828-833.	2.9	29

	Fine-scale genetic structure enhances biparental inbreeding by promoting mating events between more		
72	related individuals in wild soybean (Glycine soja; Fabaceae) populations. American Journal of Botany,	1.7	28
	2009, 96, 1138-1147.		

#	Article	IF	CITATIONS
73	Differentiation and distribution of indica and japonica rice varieties along the altitude gradients in Yunnan Province of China as revealed by InDel molecular markers. Genetic Resources and Crop Evolution, 2010, 57, 891-902.	1.6	28
74	Limited Fitness Advantages of Crop-Weed Hybrid Progeny Containing Insect-Resistant Transgenes (Bt/CpTI) in Transgenic Rice Field. PLoS ONE, 2012, 7, e41220.	2.5	27
75	Seed-Mediated Gene Flow Promotes Genetic Diversity of Weedy Rice within Populations: Implications for Weed Management. PLoS ONE, 2014, 9, e112778.	2.5	26
76	Temporal Trends of Variation in Italian Rice Germplasm over the Past Two Centuries Revealed by AFLP and SSR Markers. Crop Science, 2008, 48, 1832-1840.	1.8	25
77	Balance between a Higher Degree of Heterosis and Increased Reproductive Isolation: A Strategic Design for Breeding Inter-Subspecific Hybrid Rice. PLoS ONE, 2014, 9, e93122.	2.5	25
78	Interspecific hybridization between Elymus himalayanus and E. schrenkianus, and other Elymus species (Triticeae: Poaceae). Genome, 1992, 35, 230-237.	2.0	24
79	Identification of SNPs and development of allelic specific PCR markers for high molecular weight glutenin subunit Dtx1.5 from Aegilops tauschii through sequence characterization. Journal of Cereal Science, 2005, 41, 13-18.	3.7	24
80	Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Science Bulletin, 2006, 51, 1219-1227.	1.7	24
81	Impact of weedy rice populations on the growth and yield of direct-seeded and transplanted rice. Weed Biology and Management, 2007, 7, 97-104.	1.4	24
82	Population structure affected by excess gene flow in selfâ€pollinating <i>Elymus nutans</i> and <i>E. burchanâ€buddae</i> (Triticeae: Poaceae). Population Ecology, 2010, 52, 233-241.	1.2	24
83	Meiotic analysis ofElymus caucasicus, E. longearistatus, and their interspecific hybrids with twenty-threeElymus species (Triticeae, Poaceae). Plant Systematics and Evolution, 1993, 185, 35-53.	0.9	23
84	Relationships of Aegilops tauschii revealed by DNA fingerprints: The evidence for agriculture exchange between China and the West. Progress in Natural Science: Materials International, 2008, 18, 1525-1531.	4.4	23
85	Latitudinal Distribution and Differentiation of Rice Germplasm: Its Implications in Breeding. Crop Science, 2011, 51, 1050-1058.	1.8	23
86	Singleâ€seeded InDel fingerprints in rice: An effective tool for <i>indica–japonica</i> rice classification and evolutionary studies. Journal of Systematics and Evolution, 2012, 50, 1-11.	3.1	23
87	Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants. Frontiers in Plant Science, 2018, 9, 233.	3.6	23
88	Abundant genetic diversity in cultivated Codonopsis pilosula populations revealed by RAPD polymorphisms. Genetic Resources and Crop Evolution, 2007, 54, 917-924.	1.6	22
89	Genetically engineered rice endogenous 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) transgene alters phenology and fitness of crop-wild hybrid offspring. Scientific Reports, 2017, 7, 6834.	3.3	22
90	Title is missing!. Genetic Resources and Crop Evolution, 1998, 45, 215-223.	1.6	21

#	Article	IF	CITATIONS
91	Can transgenic rice cause ecological risks through transgene escape?*. Progress in Natural Science: Materials International, 2003, 13, 17-24.	4.4	21
92	Rational Design of Catechol-2, 3-dioxygenase for Improving the Enzyme Characteristics. Applied Biochemistry and Biotechnology, 2010, 162, 116-126.	2.9	21
93	Introgression of transgenic crop alleles: Its evolutionary impacts on conserving genetic diversity of crop wild relatives. Journal of Systematics and Evolution, 2013, 51, 245-262.	3.1	21
94	High level of variation among <scp>S</scp> ri <scp>L</scp> ankan weedy rice populations, as estimated by morphological characterization. Weed Biology and Management, 2014, 14, 68-75.	1.4	21
95	Co-expression of ApGSMT and ApDMT promotes biosynthesis of glycine betaine in rice (Oryza sativa L.) and enhances salt and cold tolerance. Environmental and Experimental Botany, 2014, 104, 16-25.	4.2	21
96	Genomic relationships within theElymus parviglumis group (Triticeae: Poaceae). Plant Systematics and Evolution, 1993, 187, 191-211.	0.9	20
97	Functional defect at the rice choline monooxygenase locus from an unusual postâ€ŧranscriptional processing is associated with the sequence elements of shortâ€direct repeats. New Phytologist, 2007, 175, 439-447.	7.3	20
98	Genomic constitution of Elymus parviglumis and E. pseudonutans: Triticeae (Poaceae). Hereditas, 2008, 113, 109-119.	1.4	20
99	Editorial. Transgene containment by molecular means - is it possible and cost effective?. Environmental Biosafety Research, 2003, 2, 3-8.	1.1	20
100	Intra-population genetic diversity of two wheatgrass species along altitude gradients on the Qinghai-Tibetan Plateau: its implication for conservation and utilization. Conservation Genetics, 2009, 10, 359-367.	1.5	19
101	Normal expression of insect-resistant transgene in progeny of common wild rice crossed with genetically modified rice: its implication in ecological biosafety assessment. Theoretical and Applied Genetics, 2009, 119, 635-644.	3.6	19
102	Challenges of transgenic crop commercialization in China. Nature Plants, 2016, 2, 16077.	9.3	19
103	Rapid and reliable identification of rice genomes by RFLP analysis of PCR-amplified Adh genes. Genome, 2001, 44, 1136-1142.	2.0	18
104	Mapping quantitative trait loci (QTL) determining seed-shattering in weedy rice: evolution of seed shattering in weedy rice through de-domestication. Euphytica, 2015, 204, 513-522.	1.2	18
105	Title is missing!. Genetic Resources and Crop Evolution, 1997, 44, 25-31.	1.6	17
106	Efficacy of insect-resistance Bt/CpTI transgenes in F 5 –F 7 generations of rice crop–weed hybrid progeny: implications for assessing ecological impact of transgene flow. Science Bulletin, 2015, 60, 1563-1571.	9.0	17
107	Can transgenic rice cause ecological risks through transgene escape?. Progress in Natural Science: Materials International, 2003, 13, 17.	4.4	17
108	Production and cytogenetic analysis of the intergeneric hybrids between nine Elymus species and common wheat (Triticum aestivum L.). Euphytica, 1991, 58, 81-95.	1.2	16

#	Article	IF	CITATIONS
109	Intergeneric hybridization and C-banding patterns inHordelymus (Triticeae, Poaceae). Plant Systematics and Evolution, 1994, 189, 259-266.	0.9	16

Oryza coarctata: the name that best reflects the relationships of Porteresia coarctata (Poaceae:) Tj ETQq0.0 rgBT (Qverlock 10 Tf 50 7 $_{10}^{10}$ S $_{$

111	Ambient insect pressure and recipient genotypes determine fecundity of transgenic cropâ€weed rice hybrid progeny: Implications for environmental biosafety assessment. Evolutionary Applications, 2016, 9, 847-856.	3.1	16
112	Cytogenetic studies of the hybrid between Psathyrostachys juncea and P. huashanica (Poaceae). Nordic Journal of Botany, 1989, 9, 11-14.	0.5	15
113	Inheritance and expression of stripe rust resistance in common wheat (Triticum aestivum) transferred from Aegilops tauschii and its utilization. Hereditas, 2003, 139, 49-55.	1.4	15
114	Identification of genomic constitutions of Oryza species with the B and C genomes by the PCR-RFLP method. Genetic Resources and Crop Evolution, 2005, 52, 69-76.	1.6	15
115	Genetic Differentiation in Oryza meridionalis Ng based on Molecular and Crossability Analyses. Genetic Resources and Crop Evolution, 2005, 52, 435-445.	1.6	15
116	Inter-simple sequence repeat (ISSR) variation in populations of the cutgrass Leersia hexandra. Aquatic Botany, 2006, 84, 359-362.	1.6	15
117	Genetic spatial clustering: significant implications for conservation of wild soybean (ClycineÂsoja:) Tj ETQq1 1 0.	784314 rg 1.1	BT_/Overlo
118	Differentiation of the SY genomes in Asiatic Elymus. Hereditas, 2008, 116, 121-126.	1.4	15
119	The Bsister MADS Gene FST Determines Ovule Patterning and Development of the Zygotic Embryo and Endosperm. PLoS ONE, 2013, 8, e58748.	2.5	15
120	Multiple tissue-specific expression of rice seed-shattering gene SH4 regulated by its promoter pSH4. Rice, 2015, 8, 12.	4.0	15
121	The Puzzle of Italian Rice Origin and Evolution: Determining Genetic Divergence and Affinity of Rice Germplasm from Italy and Asia. PLoS ONE, 2013, 8, e80351.	2.5	15
122	Dihaploids of Elymus from the interspecific crosses E. dolichatherus x E. tibeticus and E. brevipes x E. panormitanus. Theoretical and Applied Genetics, 1992, 83, 997-1002.	3.6	14
123	Inferring population history from fine-scale spatial genetic analysis in Oryza rufipogon (Poaceae). Molecular Ecology, 2006, 15, 1535-1544.	3.9	14
124	A Built-In Mechanism to Mitigate the Spread of Insect-Resistance and Herbicide-Tolerance Transgenes into Weedy Rice Populations. PLoS ONE, 2012, 7, e31625.	2.5	14
125	Genetic divergence of weedy rice populations associated with their geographic location and coexisting conspecific crop: Implications on adaptive evolution of agricultural weeds. Journal of Systematics and Evolution, 2015, 53, 330-338.	3.1	14
126	Intercropping of rice varieties increases the efficiency of blast control through reduced disease occurrence and variability. Journal of Integrative Agriculture, 2016, 15, 795-802.	3.5	14

#	Article	IF	CITATIONS
127	A conserved unusual posttranscriptional processing mediated by short, direct repeated (SDR) sequences in plants. Journal of Genetics and Genomics, 2010, 37, 85-99.	3.9	13
128	Genomic relationships between species of theElymus semicostatus group andElymus sensu lato (Poaceae). Plant Systematics and Evolution, 1994, 191, 199-211.	0.9	12
129	Elimination of a Retrotransposon for Quenching Genome Instability in Modern Rice. Molecular Plant, 2019, 12, 1395-1407.	8.3	12
130	Multidirectional Gene Flow among Wild, Weedy, and Cultivated Soybeans. , 2005, , 137-147.		12
131	Cytogenetic studies of the intergeneric hybrids between Secale cereale and Elymus caninus, E. brevipes, and E. tsukushiensis (Triticeae: Poaceae). Theoretical and Applied Genetics, 1991, 81, 524-532.	3.6	11
132	Interspecific hybridizations among species of theElymus semicostatus andElymus tibeticus groups (Poaceae). Plant Systematics and Evolution, 1994, 189, 1-13.	0.9	11
133	A biosystematic study of theOryza meyeriana complex (Poaceae). Plant Systematics and Evolution, 2000, 224, 139-151.	0.9	11
134	Differentiation of Indica-Japonica rice revealed by insertion/deletion (InDel) fragments obtained from the comparative genomic study of DNA sequences between 93-11 (Indica) and Nipponbare (Japonica). Frontiers of Biology in China: Selected Publications From Chinese Universities, 2007, 2, 291-296.	0.2	11
135	Meiotic studies of the hybrids among Pseudoroegneria cognata, Elymus semicostatus and E. pendulinus (Poaceae). Hereditas, 2008, 114, 117-124.	1.4	11
136	No effect of transgene and strong wild parent effects on seed dormancy in crop-wild hybrids of rice: implications for transgene persistence in wild populations. Annals of Applied Biology, 2011, 159, 348-357.	2.5	11
137	Reduced weed seed shattering by silencing a cultivated rice gene: strategic mitigation for escaped transgenes. Transgenic Research, 2017, 26, 465-475.	2.4	11
138	Sampling strategy for genetic diversity. Biodiversity Science, 2003, 11, 155-161.	0.6	11
139	Genomic constitutions of four Chinese endemic Elymus species: E. brevipes, E. yangii, E. anthosachnoides, and E. altissimus (Triticeae, Poaceae). Genome, 1993, 36, 863-876.	2.0	10
140	Biosystematic study of hexaploidsElymus tschimganicus andE. glaucissimus. I. Morphology and genomic constitution. Chromosome Research, 1994, 2, 209-215.	2.2	10
141	Genetic patterns of ten Elymus species from the Tibetan and Inner Mongolian plateaus of China. Grass and Forage Science, 2006, 61, 398-404.	2.9	10
142	Population Genetic Structure of the Medicinal Plant <i>Vitex rotundifolia</i> in China: Implications for its Use and Conservation. Journal of Integrative Plant Biology, 2008, 50, 1118-1129.	8.5	10
143	Differentiation of the SY genomes in Asiatic Elymus. Hereditas, 0, 116, 121-126.	1.4	10
144	Genetic Differentiation of Asian Weedy Rice Revealed with InDel Markers. Crop Science, 2014, 54, 2499-2508.	1.8	10

6

#	Article	IF	CITATIONS
145	Interspecific hybridizations withElymus confusus andE. dolichatherus, and their genomic relationship (Poaceae: Triticeae). Plant Systematics and Evolution, 1995, 197, 1-17.	0.9	9
146	Inheritance of the Triple-spikelet Character in a Tibetan Landrace of Common Wheat. Genetic Resources and Crop Evolution, 2005, 52, 847-851.	1.6	9
147	Reproductive modes of three Ligularia weeds (Asteraceae) in grasslands in Qinghai-Tibet Plateau and their implications for grassland management. Ecological Research, 2006, 21, 246-254.	1.5	9
148	Characterization of the genes coding for the high molecular weight glutenin subunits in Lophopyrum elongatum. Hereditas, 2008, 145, 48-57.	1.4	9
149	Scale effect on rice pollenâ€mediated gene flow: implications inÂassessing transgene flow from genetically engineered plants. Annals of Applied Biology, 2012, 161, 3-11.	2.5	9
150	World food security and the tribe Triticeae (Poaceae): Genetic resources of cultivated, wild, and weedy taxa for crop improvement. Journal of Systematics and Evolution, 2014, 52, 661-666.	3.1	8
151	The Accumulation of Glycine Betaine Is Dependent on Choline Monooxygenase (OsCMO), Not on Phosphoethanolamine N-Methyltransferase (OsPEAMT1), in Rice (Oryza sativa L. ssp. japonica). Plant Molecular Biology Reporter, 2014, 32, 916-922.	1.8	8
152	Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation. AoB PLANTS, 2018, 10, plx055.	2.3	8
153	Segregation distortion affected by transgenes in early generations of rice cropâ€weed hybrid progeny: Implications for assessing potential evolutionary impacts from transgene flow into wild relatives. Journal of Systematics and Evolution, 2014, 52, 466-476.	3.1	7
154	Limited ecological risk of insect-resistance transgene flow from cultivated rice to its wild ancestor based on life-cycle fitness assessment. Science Bulletin, 2016, 61, 1440-1450.	9.0	7
155	The current status and perspectives of on farm conservation of crop genetic diversity. Biodiversity Science, 2002, 10, 409-415.	0.6	7
156	Intergeneric crosses of Psathyrostachys huashanica with Elymus spp. and cytogenetic studies of the hybrids with E. tsukushiensis (Poaceae, Triticeae). Nordic Journal of Botany, 1991, 11, 27-32.	0.5	6
157	Biosystematic study of hexaploids <i>Elymus tschimganicus</i> and <i>E</i> . <i>glaucissimus</i> . II. Interspecific hybridization and genomic relationship. Genome, 1993, 36, 1157-1168.	2.0	6
158	Genetic Evaluation of in situ Conserved and Reintroduced Populations of Wild Rice (Oryza rufipogon:) Tj ETQqO	0 0 rgBT /	Overlock 10
159	Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2007, 2, 397-402.	0.2	6
160	Assessment of transgene flow in tomato and potential effects of genetically modified tomato expressing <scp>Cry3Bb1</scp> toxins onÂbumblebee feeding behaviour. Annals of Applied Biology, 2012, 161, 151-160.	2.5	6
161	Limited divergence among populations of rice striped stem borer in southeast China caused by gene flow: Implications for resistance management, Journal of Systematics and Evolution, 2012, 50, 443-453	3.1	6

162Scientific data published by a peerâ€reviewed journal should be properly interpreted: a reply to the
letter by Gressel <i>etÂal</i>7.3

#	Article	IF	CITATIONS
163	Two new Tibetan species of Elymus (Poaceae: niticeae) and their genomic relationships. Nordic Journal of Botany, 1993, 13, 353-367.	0.5	5

164 Genomic relationships of theElymus parviglumis, E. semicostatus, andE. tibeticus groups (Triticeae:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

165	Molecular characterization of the HMW glutenin genes Dt x1.5Â+ÂDt y10 from Aegilops tauschii and their PCR-mediated recombinants. Molecular Breeding, 2005, 15, 247-255.	2.1	5
166	Functional Characterization of an Aldehyde Dehydrogenase Homologue in Rice. Journal of Integrative Agriculture, 2012, 11, 1434-1444.	3.5	5
167	Population clonal diversity and fine-scale genetic structure in Oryza officinalis (Poaceae) from China, implications for in situ conservation. Genetic Resources and Crop Evolution, 2012, 59, 113-124.	1.6	5
168	Using a single transgenic event to infer fitness effects in crop–weed hybrids: a reply to the Letter by Grunewald & Bury (2014). New Phytologist, 2014, 202, 370-372.	7.3	5
169	Non-random transmission of parental alleles into crop-wild and crop-weed hybrid lineages separated by a transgene and neutral identifiers in rice. Scientific Reports, 2017, 7, 10436.	3.3	5
170	The New Is Old: Novel Germination Strategy Evolved From Standing Genetic Variation in Weedy Rice. Frontiers in Plant Science, 2021, 12, 699464.	3.6	5
171	High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed. PLoS ONE, 2016, 11, e0149563.	2.5	5
172	Taxonomy and morphology of the Elymus parviglumis group (Triticeae: Poaceae). Nordic Journal of Botany, 1995, 15, 3-37.	0.5	4
173	Experimental validation of inter-subspecific genetic diversity in rice represented by the differences between the DNA sequences of â€~Nipponbare' and â€~93-11'. Science Bulletin, 2007, 52, 1327-1337.	1.7	4
174	Polyploidy origin of wheatgrass Douglasdeweya wangii (Triticeae, Poaceae): evidence from nuclear ribosomal DNA internal transcribed spacer and chloroplast trnL–F sequences. Development Genes and Evolution, 2010, 220, 173-178.	0.9	4
175	Genomic constitution of the allo-octoploid Elymus tenuis (Poaceae: Triticeae) of New Zealand. Australian Systematic Botany, 2010, 23, 381.	0.9	4
176	Endoâ€allopolyploidy of autopolyploids and recurrent hybridization—A possible mechanism to explain the unresolved Yâ€genome donor in polyploid <i>Elymus</i> species (Triticeae: Poaceae). Journal of Systematics and Evolution, 2022, 60, 344-360.	3.1	4
177	Origins of weedy rice revealed by polymorphisms of chloroplast DNA sequences and nuclear microsatellites. Journal of Systematics and Evolution, 2021, 59, 316-325.	3.1	4
178	Key Roles of De-Domestication and Novel Mutation in Origin and Diversification of Global Weedy Rice. Biology, 2021, 10, 828.	2.8	4
179	Increases in Genetic Diversity of Weedy Rice Associated with Ambient Temperatures and Limited Gene Flow. Biology, 2021, 10, 71.	2.8	4
180	Differentiation of the S _t Y genomes in <i>Elymus</i> species as referred by meiotic pairing in interspecific hybrids and its evolutionary significance. Biodiversity	0.6	4

#	Article	IF	CITATIONS
181	Title is missing!. Genetic Resources and Crop Evolution, 2003, 50, 477-488.	1.6	3
182	Differentiation of the high molecular weight glutenin subunit Dt x2.1 of Aegilops tauschii indicated by partial sequences of its encoding gene and SSR markers. Euphytica, 2005, 141, 75-83.	1.2	3
183	Increased novel single nucleotide polymorphisms in weedy rice populations associated with the change of farming styles: Implications in adaptive mutation and evolution. Journal of Systematics and Evolution, 2017, 55, 149-157.	3.1	3
184	Enhanced genetic diversity of weedy rice populations associated with latitude decreases revealed by simple sequence repeat fingerprints. Journal of Systematics and Evolution, 2019, 57, 66-74.	3.1	3
185	Soil burial induced dormancy in weedy rice seeds through hormone level changes: Implications in adaptive evolution and weed control. Journal of Systematics and Evolution, 2022, 60, 1049-1061.	3.1	3
186	Cytological Studies of F1 Hybrids and a Dihaploid from the Interspecific Cross Elymus Anthosachnoides × E. abolinii (Triticeae, Poaceae). Hereditas, 2004, 118, 7-14.	1.4	2
187	Strategic Conservation of Orchard Germplasm Based on Indigenous Knowledge and Genetic Diversity: a Case Study of Sour Orange Populations in China. Journal of Integrative Plant Biology, 2009, 51, 100-106.	8.5	2
188	Human evolution and humanâ€influenced evolution of organisms in changing environments. Journal of Systematics and Evolution, 2013, 51, 241-244.	3.1	2
189	Predicting hybrid fertility from maker-based genetic divergence index of parental varieties: implications for utilizing inter-subspecies heterosis in hybrid rice breeding. Euphytica, 2015, 203, 47-57.	1.2	2
190	Increased Longevity and Dormancy of Soil-Buried Seeds from Advanced Crop–Wild Rice Hybrids Overexpressing the EPSPS Transgene. Biology, 2021, 10, 562.	2.8	2
191	Biodiversity Inventory and Researches. , 2015, , 3-28.		2
192	Model-based calculating tool for pollen-mediated gene flow frequencies in plants. AoB PLANTS, 2016, , plw086.	2.3	1
193	Challenges and opportunities in environmental biosafety research. Environmental Biosafety Research, 2010, 9, 1-3.	1.1	1
194	Segregation distortion affected by transgenes in early generations of rice crop-weed hybrid progeny: Implications for assessing potential evolutionary impacts from transgene flow into wild relatives. , 2014, 52, 466.		1
195	China: earlier experiences and future prospects. , 0, , 150-166.		0
196	Dr. Yang Zhong: An explorer on the road forever. Protein and Cell, 2018, 9, 141-144.	11.0	0
197	Conservation and Sustainable Use of Biodiversity in Wild Relatives of Crop Species. , 2002, , 23-34.		0
198	Sympatric genetic divergence between early―and lateâ€season weedy rice populations. New Phytologist, 0, , .	7.3	0