
Richard G F Visser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475, 189-195.	27.8	1,912
2	Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant Journal, 1996, 9, 745-753.	5.7	764
3	lf Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture. Plant Physiology, 2003, 132, 1781-1789.	4.8	527
4	Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Frontiers in Chemistry, 2018, 6, 52.	3.6	456
5	Societal Costs of Late Blight in Potato and Prospects of Durable Resistance Through Cisgenic Modification. Potato Research, 2008, 51, 47-57.	2.7	381
6	Applied Biotechnology to Combat Late Blight in Potato Caused by Phytophthora Infestans. Potato Research, 2009, 52, 249-264.	2.7	363
7	Effector Genomics Accelerates Discovery and Functional Profiling of Potato Disease Resistance and Phytophthora Infestans Avirulence Genes. PLoS ONE, 2008, 3, e2875.	2.5	361
8	Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant Journal, 2005, 42, 251-261.	5.7	355
9	A Next-Generation Sequencing Method for Genotyping-by-Sequencing of Highly Heterozygous Autotetraploid Potato. PLoS ONE, 2013, 8, e62355.	2.5	317
10	Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495, 246-250.	27.8	313
11	Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding, 2010, 25, 1-12.	2.1	300
12	The Tomato Yellow Leaf Curl Virus Resistance Genes Ty-1 and Ty-3 Are Allelic and Code for DFDGD-Class RNA–Dependent RNA Polymerases. PLoS Genetics, 2013, 9, e1003399.	3.5	299
13	Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Frontiers in Plant Science, 2014, 5, 207.	3.6	295
14	Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Molecular Genetics and Genomics, 1991, 225, 289-296.	2.4	260
15	RECORD: a novel method for ordering loci on a genetic linkage map. Theoretical and Applied Genetics, 2005, 112, 30-40.	3.6	248
16	Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating the Potato Genome with Genetic and Physical Maps. G3: Genes, Genomes, Genetics, 2013, 3, 2031-2047.	1.8	244
17	SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theoretical and Applied Genetics, 2005, 112, 187-194.	3.6	239
18	Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants, 2015, 1, 15034.	9.3	229

#	Article	IF	CITATIONS
19	Construction of a 10,000-Marker Ultradense Genetic Recombination Map of Potato: Providing a Framework for Accelerated Gene Isolation and a Genomewide Physical Map. Genetics, 2006, 173, 1075-1087.	2.9	212
20	Towards F1 Hybrid Seed Potato Breeding. Potato Research, 2011, 54, 301-312.	2.7	204
21	Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Research, 2012, 21, 89-99.	2.4	198
22	Transcript Imaging with cDNA-AFLP: A Step-by-Step Protocol. Plant Molecular Biology Reporter, 1998, 16, 157-157.	1.8	194
23	Progress in understanding the biosynthesis of amylose. Trends in Plant Science, 1998, 3, 462-467.	8.8	193
24	Isolation of an amylose-free starch mutant of the potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 1987, 75, 217-221.	3.6	186
25	Exploiting Knowledge of <i>R/Avr</i> Genes to Rapidly Clone a New LZ-NBS-LRR Family of Late Blight Resistance Genes from Potato Linkage Group IV. Molecular Plant-Microbe Interactions, 2009, 22, 630-641.	2.6	181
26	Tomato yellow leaf curl virus resistance by <i>Ty-1</i> involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12942-12947.	7.1	180
27	Tools for Genetic Studies in Experimental Populations of Polyploids. Frontiers in Plant Science, 2018, 9, 513.	3.6	175
28	Durable Late Blight Resistance in Potato Through Dynamic Varieties Obtained by Cisgenesis: Scientific and Societal Advances in the DuRPh Project. Potato Research, 2016, 59, 35-66.	2.7	171
29	The potential of C4 grasses for cellulosic biofuel production. Frontiers in Plant Science, 2013, 4, 107.	3.6	170
30	EBP1 regulates organ size through cell growth and proliferation in plants. EMBO Journal, 2006, 25, 4909-4920.	7.8	169
31	Genetic Variation in Pea Seed Clobulin Composition. Journal of Agricultural and Food Chemistry, 2006, 54, 425-433.	5.2	165
32	Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theoretical and Applied Genetics, 2015, 128, 2387-2401.	3.6	165
33	Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant Journal, 2018, 93, 781-793.	5.7	163
34	Qualitative and Quantitative Late Blight Resistance in the Potato Cultivar Sarpo Mira Is Determined by the Perception of Five Distinct RXLR Effectors. Molecular Plant-Microbe Interactions, 2012, 25, 910-919.	2.6	162
35	Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theoretical and Applied Genetics, 2017, 130, 123-135.	3.6	158
36	Secondary somatic embryogenesis and applications in plant breeding. Euphytica, 1995, 81, 93-107.	1.2	151

#	Article	IF	CITATIONS
37	Mapping and Cloning of Late Blight Resistance Genes from <i>Solanum venturii</i> Using an Interspecific Candidate Gene Approach. Molecular Plant-Microbe Interactions, 2009, 22, 601-615.	2.6	148
38	<i>Rin4</i> Causes Hybrid Necrosis and Race-Specific Resistance in an Interspecific Lettuce Hybrid. Plant Cell, 2009, 21, 3368-3378.	6.6	146
39	Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica, 2009, 167, 353-370.	1.2	145
40	Genetic architecture of plant stress resistance: multiâ€ŧrait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	7.3	144
41	Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theoretical and Applied Genetics, 2011, 123, 1425-1431.	3.6	140
42	Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Current Biology, 2019, 29, 1178-1186.e6.	3.9	137
43	The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses. Frontiers in Plant Science, 2018, 9, 801.	3.6	135
44	Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant Journal, 1995, 8, 283-294.	5.7	134
45	Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 2020, 52, 1018-1023.	21.4	134
46	The Late Blight Resistance Locus Rpi-blb3 from Solanum bulbocastanum Belongs to a Major Late Blight R Gene Cluster on Chromosome 4 of Potato. Molecular Plant-Microbe Interactions, 2005, 18, 722-729.	2.6	133
47	Sequence of the structural gene for granule-bound starch synthase of potato (Solarium tuberosum) Tj ETQq1 1 (228, 240-248.	0.784314 2.4	rgBT /Overloc 126
48	Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126, 2335-2351.	3.6	124
49	<i>StGA2ox1</i> is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant Journal, 2007, 52, 362-373.	5.7	122
50	Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola. PLoS ONE, 2009, 4, e5863.	2.5	122
51	The R3 Resistance to Phytophthora infestans in Potato is Conferred by Two Closely Linked R Genes with Distinct Specificities. Molecular Plant-Microbe Interactions, 2004, 17, 428-435.	2.6	121
52	The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, 2012, 63, 4539-4547.	4.8	121
53	Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnology, 2014, 14, 50.	3.3	120
54	Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality Â. Plant Physiology, 2012, 158, 1306-1318.	4.8	119

#	Article	IF	CITATIONS
55	<i>Phytophthora infestans</i> Isolates Lacking Class I <i>ipiO</i> Variants Are Virulent on <i>Rpi-blb1</i> Potato. Molecular Plant-Microbe Interactions, 2009, 22, 1535-1545.	2.6	118
56	Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta, 1997, 202, 220-226.	3.2	116
57	Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods, 2009, 5, 13.	4.3	116
58	Cloning and expression analysis of a potato cDNA that encodes branching enzyme evidence for co-expression of starch biosynthetic genes. Molecular Genetics and Genomics, 1991, 230, 39-44.	2.4	115
59	Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Molecular Biology, 1991, 17, 691-699.	3.9	114
60	Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Functional and Integrative Genomics, 2008, 8, 329-340.	3.5	114
61	CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology, 2020, 20, 284.	3.6	114
62	Cloning and Characterization of <i>R3b</i> ; Members of the <i>R3</i> Superfamily of Late Blight Resistance Genes Show Sequence and Functional Divergence. Molecular Plant-Microbe Interactions, 2011, 24, 1132-1142.	2.6	113
63	Loss of Function in Mlo Orthologs Reduces Susceptibility of Pepper and Tomato to Powdery Mildew Disease Caused by Leveillula taurica. PLoS ONE, 2013, 8, e70723.	2.5	113
64	Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics, 2010, 121, 1151-1170.	3.6	107
65	The dosage effect of the wildtype CBSS allele is linear for CBSS activity but not for amylose content: absence of amylose has a distinct influence on the physico-chemical properties of starch. Theoretical and Applied Genetics, 1996, 92, 121-127.	3.6	106
66	Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Molecular Genetics and Genomics, 2005, 274, 30-39.	2.1	106
67	New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theoretical and Applied Genetics, 2012, 124, 125-142.	3.6	106
68	The effect of pyramiding Phytophthora infestans resistance genes R Pi-mcd1 and R Pi-ber in potato. Theoretical and Applied Genetics, 2010, 121, 117-125.	3.6	104
69	The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theoretical and Applied Genetics, 2014, 127, 1353-1364.	3.6	104
70	A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biology, 2015, 15, 243.	3.6	104
71	The Double-Reduction Landscape in Tetraploid Potato as Revealed by a High-Density Linkage Map. Genetics, 2015, 201, 853-863.	2.9	100
72	polymapR—linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. Bioinformatics, 2018, 34, 3496-3502.	4.1	99

#	Article	IF	CITATIONS
73	A new and versatile method for the successful conversion of AFLPTM markers into simple single locus markers. Nucleic Acids Research, 2003, 31, 55e-55.	14.5	98
74	Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics, 2014, 15, 618.	2.8	97
75	Chromosomal rearrangements between tomato and <i>Solanum chilense</i> hamper mapping and breeding of the TYLCV resistance gene <i>Tyâ€I </i> . Plant Journal, 2011, 68, 1093-1103.	5.7	96
76	Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theoretical and Applied Genetics, 2012, 124, 923-935.	3.6	96
77	Complexes with Mixed Primary and Secondary Cellulose Synthases Are Functional in Arabidopsis Plants Â. Plant Physiology, 2012, 160, 726-737.	4.8	95
78	Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding, 2014, 34, 749-760.	2.1	95
79	The <i>Bemisia tabaci</i> species complex: Additions from different parts of the world. Insect Science, 2013, 20, 723-733.	3.0	94
80	Resistance to Bemisia tabaci in tomato wild relatives. Euphytica, 2012, 187, 31-45.	1.2	93
81	Transformation of homozygous diploid potato with an Agrobacterium tumefaciens binary vector system by adventitious shoot regeneration on leaf and stem segments. Plant Molecular Biology, 1989, 12, 329-337.	3.9	92
82	Identification of Granule-Bound Starch Synthase in Potato Tubers. Plant Physiology, 1986, 82, 411-416.	4.8	90
83	An Online Potato Pedigree Database Resource. Potato Research, 2007, 50, 45-57.	2.7	90
84	MADMAX - Management and analysis database for multiple ~omics experiments. Journal of Integrative Bioinformatics, 2011, 8, 160.	1.5	90
85	Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Research, 2016, 25, 731-742.	2.4	89
86	Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Molecular Biology, 1993, 23, 947-962.	3.9	88
87	Sequencing the Potato Genome: Outline and First Results to Come from the Elucidation of the Sequence of the World's Third Most Important Food Crop. American Journal of Potato Research, 2009, 86, 417-429.	0.9	87
88	Beyond genomic variation - comparison and functional annotation of three Brassica rapagenomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics, 2014, 15, 250.	2.8	87
89	Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. Journal of Experimental Botany, 2016, 67, 5119-5132.	4.8	87
90	In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant Journal, 2002, 30, 403-413.	5.7	86

#	Article	IF	CITATIONS
91	Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnology Journal, 2005, 3, 505-519.	8.3	86
92	Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics, 2013, 14, 354.	2.8	86
93	Bacterial Canker of Tomato: Current Knowledge of Detection, Management, Resistance, and Interactions. Plant Disease, 2015, 99, 4-13.	1.4	86
94	Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy, 2017, 9, 770-782.	5.6	85
95	Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm. Frontiers in Plant Science, 2018, 9, 1198.	3.6	85
96	Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.	7.3	84
97	The <i>R_{Pi-mcd1}</i> Locus from <i>Solanum microdontum</i> Involved in Resistance to <i>Phytophthora infestans</i> , Causing a Delay in Infection, Maps on Potato Chromosome <i>4</i> in a Cluster of NBS-LRR Genes. Molecular Plant-Microbe Interactions, 2008, 21, 909-918.	2.6	83
98	Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Molecular Biology, 2010, 73, 659-671.	3.9	83
99	Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Molecular Breeding, 2012, 29, 801-812.	2.1	79
100	Breeding Has Increased the Diversity of Cultivated Tomato in The Netherlands. Frontiers in Plant Science, 2019, 10, 1606.	3.6	79
101	Cross-Species Bacterial Artificial Chromosome–Fluorescence in Situ Hybridization Painting of the Tomato and Potato Chromosome 6 Reveals Undescribed Chromosomal Rearrangements. Genetics, 2008, 180, 1319-1328.	2.9	78
102	The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theoretical and Applied Genetics, 2016, 129, 1785-1796.	3.6	78
103	Genomic rearrangements and signatures of breeding in the allo-octoploid strawberry as revealed through an allele dose based SSR linkage map. BMC Plant Biology, 2014, 14, 55.	3.6	75
104	A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genetics and Biology, 2016, 93, 35-45.	2.1	75
105	Untargeted metabolomic analysis of tomato pollen development and heat stress response. Plant Reproduction, 2017, 30, 81-94.	2.2	75
106	Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biology, 2019, 19, 333.	3.6	75
107	Cenetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. Journal of Experimental Botany, 2012, 63, 2895-2908.	4.8	74
108	Powdery Mildew Resistance in Tomato by Impairment of SIPMR4 and SIDMR1. PLoS ONE, 2013, 8, e67467.	2.5	74

#	Article	IF	CITATIONS
109	A non-directed approach to the differential analysis of multiple LC–MS-derived metabolic profiles. Metabolomics, 2005, 1, 169-180.	3.0	73
110	Towards modifying plants for altered starch content and composition. Trends in Biotechnology, 1993, 11, 63-68.	9.3	72
111	Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant Journal, 2017, 90, 330-343.	5.7	72
112	Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant, 2022, 15, 520-536.	8.3	72
113	Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum) Tj ETQq1	1 0.784314 5.2	rgBT_/Overloc
114	Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theoretical and Applied Genetics, 2011, 123, 1331-1340.	3.6	70
115	Evaluation of <i>Miscanthus sinensis</i> biomass quality as feedstock for conversion into different bioenergy products. GCB Bioenergy, 2017, 9, 176-190.	5.6	70
116	Molecular breeding for resistance to <i>Phytophthora infestans</i> (Mont.) de Bary in potato (<i>Solanum tuberosum</i> L.): a perspective of cisgenesis. Plant Breeding, 2009, 128, 109-117.	1.9	69
117	Diversity, Distribution, and Evolution of <i>Solanum bulbocastanum</i> Late Blight Resistance Genes. Molecular Plant-Microbe Interactions, 2010, 23, 1206-1216.	2.6	69
118	Introduction of sense and antisense cDNA for branching enzyme in the amylose-free potato mutant leads to physico-chemical changes in the starch. Planta, 1996, 198, 340-347.	3.2	68
119	Interactions between membraneâ€bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters, 2009, 583, 978-982.	2.8	68
120	A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chemistry, 2012, 132, 301-310.	8.2	68
121	Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Protection, 2015, 77, 163-175.	2.1	67
122	Carbon partitioning mechanisms in POTATO under drought stress. Plant Physiology and Biochemistry, 2020, 146, 211-219.	5.8	67
123	Sucrose Metabolism in Plastids. Plant Physiology, 2001, 125, 926-934.	4.8	66
124	High-resolution Mapping and Analysis of the Resistance Locus Rpi-abpt Against Phytophthora infestans in Potato. Molecular Breeding, 2005, 16, 33-43.	2.1	66
125	Identification and QTL mapping of whitefly resistance components in Solanum galapagense. Theoretical and Applied Genetics, 2013, 126, 1487-1501.	3.6	66
126	Identification of agronomically important QTL in tetraploid potato cultivars using a marker–trait association analysis. Theoretical and Applied Genetics, 2014, 127, 731-748.	3.6	66

#	Article	IF	CITATIONS
127	Combined biotic and abiotic stress resistance in tomato. Euphytica, 2015, 202, 317-332.	1.2	66
128	Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 2012, 30, 1413-1429.	2.1	65
129	Genome composition of triploid lily cultivars derived from sexual polyploidization of LongiflorumÂ×ÂAsiatic hybrids (Lilium). Euphytica, 2008, 160, 207-215.	1.2	64
130	Chromosome evolution in <i>Solanum</i> traced by crossâ€species BACâ€FISH. New Phytologist, 2012, 195, 688-698.	7.3	64
131	Screening for pollen tolerance to high temperatures in tomato. Euphytica, 2017, 213, 1.	1.2	64
132	Potato CYCLING DOF FACTORÂ1 and its lncRNA counterpart <i>StFLORE</i> link tuber development and drought response. Plant Journal, 2021, 105, 855-869.	5.7	64
133	Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic Research, 2011, 20, 1253-1264.	2.4	63
134	Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Molecular Breeding, 1996, 2, 339-349.	2.1	62
135	Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theoretical and Applied Genetics, 2011, 123, 741-754.	3.6	62
136	Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics, 2012, 13, 640.	2.8	62
137	Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinformatics, 2016, 17, 180.	2.6	62
138	Fluorescencein situhybridization on extended DNA fibres as a tool to analyse complex Tâ€DNA loci in potato. Plant Journal, 1998, 13, 837-847.	5.7	61
139	A crosstalk of auxin and GA during tuber development. Plant Signaling and Behavior, 2012, 7, 1360-1363.	2.4	61
140	Genome-Wide Study of the Tomato SIMLO Gene Family and Its Functional Characterization in Response to the Powdery Mildew Fungus Oidium neolycopersici. Frontiers in Plant Science, 2016, 7, 380.	3.6	61
141	QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theoretical and Applied Genetics, 2006, 113, 288-300.	3.6	60
142	The knockâ€down of the expression of <i>MdMLO19</i> reduces susceptibility to powdery mildew (<i>Podosphaera leucotricha</i>) in apple (<i>Malus domestica</i>). Plant Biotechnology Journal, 2016, 14, 2033-2044.	8.3	60
143	Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management, 2018, 206, 20-30.	5.6	60
144	Improved Cassava Starch by Antisense Inhibition of Granule-bound Starch Synthase I. Molecular Breeding, 2005, 16, 163-172.	2.1	58

#	Article	IF	CITATIONS
145	Mapping and characterization of novel parthenocarpy QTLs in tomato. Theoretical and Applied Genetics, 2008, 116, 755-767.	3.6	58
146	From QTL to candidate gene: Genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics, 2010, 11, 158.	2.8	58
147	Europe's Farm to Fork Strategy and Its Commitment to Biotechnology and Organic Farming: Conflicting or Complementary Goals?. Trends in Plant Science, 2021, 26, 600-606.	8.8	58
148	Title is missing!. Euphytica, 2002, 124, 13-22.	1.2	57
149	Intergenomic recombination in F ₁ lily hybrids (<i>Lilium</i>) and its significance for genetic variation in the BC ₁ progenies as revealed by GISH and FISH. Genome, 2005, 48, 884-894.	2.0	57
150	Design of a <i>Brassica rapa</i> core collection for association mapping studiesThis article is one of a selection of papers from the conference "Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farmingâ€. Genome, 2010, 53, 884-898.	2.0	56
151	Environmental biosafety and transgenic potato in a centre of diversity for this crop. Nature, 2004, 432, 222-225.	27.8	55
152	Data integration and network reconstruction with â^¼omics data using Random Forest regression in potato. Analytica Chimica Acta, 2011, 705, 56-63.	5.4	55
153	Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1. Transgenic Research, 2015, 24, 847-858.	2.4	55
154	Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta, 2007, 226, 929-939.	3.2	54
155	Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in Pea[W]. Plant Cell, 2002, 14, 1767-1785.	6.6	53
156	Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate. Journal of Experimental Botany, 2013, 64, 3899-3909.	4.8	53
157	Expression of Escherichia coli branching enzyme in tubers of amylose-free transgenic potato leads to an increased branching degree of the amylopectin. Plant Journal, 1996, 10, 83-90.	5.7	52
158	Genetic Positioning of Centromeres Using Half-Tetrad Analysis in a 4x–2x Cross Population of Potato. Genetics, 2007, 176, 85-94.	2.9	52
159	Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis. Theoretical and Applied Genetics, 2007, 115, 245-252.	3.6	52
160	An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theoretical and Applied Genetics, 2017, 130, 2527-2541.	3.6	52
161	A pipeline for high throughput detection and mapping of SNPs from EST databases. Molecular Breeding, 2010, 26, 65-75.	2.1	51
162	Genetic mapping in <i>Lilium</i> : mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breeding, 2011, 130, 372-382.	1.9	51

#	Article	IF	CITATIONS
163	In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica, 2011, 181, 357-369.	1.2	51
164	Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia. Transgenic Research, 2012, 21, 39-50.	2.4	51
165	Monocot and dicot MLO powdery mildew susceptibility factors are functionally conserved in spite of the evolution of class-specific molecular features. BMC Plant Biology, 2015, 15, 257.	3.6	51
166	Integrating haplotype-specific linkage maps in tetraploid species using SNP markers. Theoretical and Applied Genetics, 2016, 129, 2211-2226.	3.6	51
167	Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environmental and Experimental Botany, 2019, 168, 103889.	4.2	51
168	Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Molecular Biology, 2003, 51, 789-801.	3.9	50
169	Characterization and high-resolution mapping of a late blight resistance locus similar to R2 in potato. Theoretical and Applied Genetics, 2005, 111, 591-597.	3.6	50
170	Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Molecular Plant Pathology, 2006, 7, 499-510.	4.2	50
171	Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. Journal of Experimental Botany, 2017, 68, 1451-1466.	4.8	50
172	Development of Wheat With Hypoimmunogenic Gluten Obstructed by the Gene Editing Policy in Europe. Frontiers in Plant Science, 2018, 9, 1523.	3.6	50
173	Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum) Tj ETQq1 1 0	.784314 rg 5.2	gBT_/Overloc
174	A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. Theoretical and Applied Genetics, 2010, 120, 785-796.	3.6	49
175	Identification of quantitative trait loci for ion homeostasis and salt tolerance in barley (Hordeum) Tj ETQq1 1 0.78	34314 rgB 2.1	T /Qverlock I
176	Developments in breeding of Agaricus bisporus var. bisporus: progress made and technical and legal hurdles to take. Applied Microbiology and Biotechnology, 2017, 101, 1819-1829.	3.6	49
177	Two different <i>R</i> gene loci co-evolved with <i>Avr2</i> of <i>Phytophthora infestans</i> and confer distinct resistance specificities in potato. Studies in Mycology, 2018, 89, 105-115.	7.2	49
178	Folate Biofortification of Potato by Tuber-Specific Expression of Four Folate Biosynthesis Genes. Molecular Plant, 2018, 11, 175-188.	8.3	49
179	Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. Theoretical and Applied Genetics, 1989, 78, 594-600.	3.6	48
180	Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions. Frontiers in Plant Science, 2015, 6, 1032.	3.6	48

#	Article	IF	CITATIONS
181	Gapless Genome Assembly of the Potato and Tomato Early Blight Pathogen <i>Alternaria solani</i> . Molecular Plant-Microbe Interactions, 2018, 31, 692-694.	2.6	48
182	Three Combined Quantitative Trait Loci from Nonhost <i>Lactuca saligna</i> Are Sufficient to Provide Complete Resistance of Lettuce Against <i>Bremia lactucae</i> . Molecular Plant-Microbe Interactions, 2009, 22, 1160-1168.	2.6	47
183	Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica, 2010, 175, 215-226.	1.2	47
184	EU court casts new plant breeding techniques into regulatory limbo. Nature Biotechnology, 2018, 36, 799-800.	17.5	47
185	A Welcome Proposal to Amend the GMO Legislation of the EU. Trends in Biotechnology, 2018, 36, 1100-1103.	9.3	47
186	Developmental changes in enzymes involved in the conversion of hexose phosphate and its subsequent metabolites during early tuberization of potato. Plant, Cell and Environment, 1999, 22, 1085-1096.	5.7	46
187	Occurrence of 2n gametes in the F1 hybrids of Oriental × Asiatic lilies (Lilium): Relevance to intergenomic recombination and backcrossing. Euphytica, 2005, 143, 67-73.	1.2	46
188	Screening of pepper accessions for resistance against two thrips species (Frankliniella occidentalis) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
189	Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica, 2011, 179, 427-438.	1.2	46
190	A limited set of starch related genes explain several interrelated traits in potato. Euphytica, 2012, 186, 501-516.	1.2	46
191	Mapping in the era of sequencing: high density genotyping and its application for mapping TYLCV resistance in Solanum pimpinellifolium. BMC Genomics, 2014, 15, 1152.	2.8	46
192	Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Molecular Breeding, 2015, 35, 132.	2.1	46
193	The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 2018, 31, 795-802.	2.6	46
194	Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnology Journal, 2004, 2, 251-260.	8.3	45
195	Hybridization between wild and cultivated potato species in the Peruvian Andes and biosafety implications for deployment of GM potatoes. Euphytica, 2008, 164, 881-892.	1.2	45
196	Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evolutionary Biology, 2013, 13, 175.	3.2	45
197	Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Research, 2009, 17, 899-915.	2.2	44
198	Potato starch synthases: Functions and relationships. Biochemistry and Biophysics Reports, 2017, 10, 7-16.	1.3	44

#	Article	IF	CITATIONS
199	Options to Reform the European Union Legislation on GMOs: Scope and Definitions. Trends in Biotechnology, 2020, 38, 231-234.	9.3	44
200	A novel method for the construction of genome wide transcriptome maps. Plant Journal, 2002, 31, 211-222.	5.7	43
201	Progenies of allotriploids of Oriental × Asiatic lilies (Lilium) examined by GISH analysis. Euphytica, 2006, 151, 243-250.	1.2	43
202	ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theoretical and Applied Genetics, 2009, 118, 1199-1209.	3.6	43
203	Molecular and Morphological Aspects of Annealing-Induced Stabilization of Starch Crystallites. Biomacromolecules, 2012, 13, 1361-1370.	5.4	43
204	Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Nature Communications, 2021, 12, 4141.	12.8	43
205	The PIN family of proteins in potato and their putative role in tuberization. Frontiers in Plant Science, 2013, 4, 524.	3.6	42
206	High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. Horticulture Research, 2016, 3, 16052.	6.3	42
207	Cloning, partial sequencing and expression of a cDNA coding for branching enzyme in cassava. Plant Molecular Biology, 1992, 20, 809-819.	3.9	41
208	Dissection of foliage and tuber late blight resistance in mapping populations of potato. Euphytica, 2005, 143, 75-83.	1.2	41
209	Analysis of the meiosis in the F1 hybrids of Longiflorum × Asiatic (LA) of lilies (Lilium) using genomic in situ hybridization. Journal of Genetics and Genomics, 2008, 35, 687-695.	3.9	41
210	Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L Molecular Breeding, 2013, 31, 247-253.	2.1	41
211	KORRIGAN1 Interacts Specifically with Integral Components of the Cellulose Synthase Machinery. PLoS ONE, 2014, 9, e112387.	2.5	41
212	Genetic variation, heritability and genotype by environment interaction of morphological traits in a tetraploid rose population. BMC Genetics, 2014, 15, 146.	2.7	41
213	An updated conventional- and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans. Euphytica, 2015, 202, 219-234.	1.2	41
214	Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Research, 2016, 25, 123-138.	2.4	41
215	Potential for analytic breeding in allopolyploids: an illustration from LongiflorumÂ×ÂAsiatic hybrid lilies (Lilium). Euphytica, 2009, 166, 399-409.	1.2	40
216	Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant Journal, 2012, 71, 602-614.	5.7	40

#	Article	IF	CITATIONS
217	Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica, 2014, 200, 475-486.	1.2	40
218	Detection of an inversion in the Ty-2 region between S. lycopersicum and S. habrochaites by a combination of de novo genome assembly and BAC cloning. Theoretical and Applied Genetics, 2015, 128, 1987-1997.	3.6	40
219	Solyntus, the New Highly Contiguous Reference Genome for Potato (<i>Solanum tuberosum</i>). G3: Genes, Genomes, Genetics, 2020, 10, 3489-3495.	1.8	40
220	In situ hybridization to somatic metaphase chromosomes of potato. Theoretical and Applied Genetics, 1988, 76, 420-424.	3.6	39
221	Field evaluation of transgenic potato plants expressing an antisense granule-bound starch synthase gene: increase of the antisense effect during tuber growth. Plant Molecular Biology, 1994, 26, 1759-1773.	3.9	39
222	Modulation of the cellulose content of tuber cell walls by antisense expression of different potato (Solanum tuberosum L.) CesA clones. Phytochemistry, 2004, 65, 535-546.	2.9	39
223	How to effectively deploy plant resistances to pests and pathogens in crop breeding. Euphytica, 2013, 190, 321-334.	1.2	39
224	Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development. Plant Biotechnology Journal, 2014, 12, 492-502.	8.3	39
225	Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals. Molecular Ecology Resources, 2015, 15, 17-27.	4.8	39
226	Complementation of the amylose-free starch mutant of potato (Solanum tuberosum.) by the gene encoding granule-bound starch synthase. Theoretical and Applied Genetics, 1991, 82, 289-295.	3.6	38
227	Factors affecting the inhibition by antisense RNA of granule-bound starch synthase gene expression in potato. Molecular Genetics and Genomics, 1995, 246, 745-755.	2.4	38
228	Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat. Molecular Genetics and Genomics, 2006, 275, 437-449.	2.1	38
229	Characterization of Cassava Starch Attributes of Different Genotypes. Starch/Staerke, 2009, 61, 472-481.	2.1	38
230	SolRgene: an online database to explore disease resistance genes in tuber-bearing Solanum species. BMC Plant Biology, 2011, 11, 116.	3.6	38
231	Resistance factors in pepper inhibit larval development of thrips (<i><scp>F</scp>rankliniella) Tj ETQq1 1 C</i>).784314 rgBT 1.4	/Overlock 10
232	Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L Biotechnology for Biofuels, 2015, 8, 160.	6.2	38
233	Induction, germination and shoot development of somatic embryos in cassava. Plant Cell, Tissue and Organ Culture, 1993, 33, 151-156.	2.3	37
234	Microbial fructan production in transgenic potato plants and tubers. Industrial Crops and Products, 1996, 5, 35-46.	5.2	37

#	Article	IF	CITATIONS
235	Post-transcriptional Gene Silencing of GBSSI in Potato: Effects of Size and Sequence of the Inverted Repeats. Plant Molecular Biology, 2006, 60, 647-662.	3.9	37
236	Effect of Maize Biomass Composition on the Optimization of Dilute-Acid Pretreatments and Enzymatic Saccharification. Bioenergy Research, 2013, 6, 1038-1051.	3.9	37
237	First successful reduction of clinical allergenicity of food by genetic modification: <i>Mal d 1</i> -silenced apples cause fewer allergy symptoms than the wild-type cultivar. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1406-1412.	5.7	37
238	Future-proof crops: challenges and strategies for climate resilience improvement. Current Opinion in Plant Biology, 2016, 30, 47-56.	7.1	37
239	QTL mapping of insect resistance components of Solanum galapagense. Theoretical and Applied Genetics, 2019, 132, 531-541.	3.6	37
240	Development of a highly efficient, repetitive system of organogenesis in soybean (Glycine max (L.)) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
241	Isolation andÂcharacterization ofÂaÂnovel potato Auxin/Indole-3-Acetic Acid family member (StIAA2) that is involved inÂpetiole hyponasty andÂshoot morphogenesis. Plant Physiology and Biochemistry, 2006, 44, 766-775.	5.8	36
242	Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 2 homologs on chromosome IX. Theoretical and Applied Genetics, 2015, 128, 931-941.	3.6	36
243	Expression and inheritance of inserted markers in binary vector carrying Agrobacterium rhizogenes-transformed potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 1989, 78, 705-714.	3.6	35
244	Field evaluation of antisense RNA mediated inhibition of GBSS gene expression in potato. Euphytica, 1991, 59, 83-91.	1.2	35
245	Title is missing!. Euphytica, 2001, 120, 85-93.	1.2	35
246	Starch phosphorylation plays an important role in starch biosynthesis. Carbohydrate Polymers, 2017, 157, 1628-1637.	10.2	35
247	Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183Âk SNP array. BMC Genomics, 2017, 18, 585.	2.8	35
248	Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Research International, 2018, 110, 11-21.	6.2	35
249	The tuberization signal StSP6A represses flower bud development in potato. Journal of Experimental Botany, 2019, 70, 937-948.	4.8	35
250	The genetic and functional analysis of flavor in commercial tomato: the <i>FLORAL4</i> gene underlies a QTL for floral aroma volatiles in tomato fruit. Plant Journal, 2020, 103, 1189-1204.	5.7	35
251	Identification of silverleaf whitefly resistance in pepper. Plant Breeding, 2011, 130, 708-714.	1.9	34
252	A Systems Genetics Approach Identifies Gene Regulatory Networks Associated with Fatty Acid Composition in <i>Brassica rapa</i> Seed. Plant Physiology, 2016, 170, 568-585.	4.8	34

#	Article	IF	CITATIONS
253	Formation and Deposition of Amylose in the Potato Tuber Starch Granule Are Affected by the Reduction of Granule-Bound Starch Synthase Gene Expression. Plant Cell, 1994, 6, 43.	6.6	33
254	Relevance of unilateral and bilateral sexual polyploidization in relation to intergenomic recombination and introgression in Lilium species hybrids. Euphytica, 2010, 171, 157-173.	1.2	33
255	Seedling salt tolerance in tomato. Euphytica, 2011, 178, 403-414.	1.2	33
256	Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance. Plant Molecular Biology, 2014, 86, 641-653.	3.9	33
257	Understanding the role of oat β-glucan in oat-based dough systems. Journal of Cereal Science, 2015, 62, 1-7.	3.7	33
258	Impact of Different Lignin Fractions on Saccharification Efficiency in Diverse Species of the Bioenergy Crop Miscanthus. Bioenergy Research, 2016, 9, 146-156.	3.9	33
259	Plant regeneration from protoplasts isolated from friable embryogenic callus of cassava. Plant Cell Reports, 1998, 18, 159-165.	5.6	32
260	A potato tuber-expressed mRNA with homology to steroid dehydrogenases affects gibberellin levels and plant development. Plant Journal, 2001, 25, 595-604.	5.7	32
261	Towards a more versatile α-glucan biosynthesis in plants. Journal of Plant Physiology, 2003, 160, 765-777.	3.5	32
262	Linked, if Not the Same, <i>Mi-1</i> Homologues Confer Resistance to Tomato Powdery Mildew and Root-Knot Nematodes. Molecular Plant-Microbe Interactions, 2011, 24, 441-450.	2.6	32
263	Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids. BMC Plant Biology, 2012, 12, 25.	3.6	32
264	Down regulation of StGA3ox genes in potato results in altered GA content and affect plant and tuber growth characteristics. Journal of Plant Physiology, 2013, 170, 1228-1234.	3.5	32
265	Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theoretical and Applied Genetics, 2014, 127, 373-390.	3.6	32
266	RLP/K enrichment sequencing; a novel method to identify receptorâ€like protein (<i>RLP</i>) and receptorâ€like kinase (<i>RLK</i>) genes. New Phytologist, 2020, 227, 1264-1276.	7.3	32
267	Exploitation of a marker dense linkage map of potato for positional cloning of a wart disease resistance gene. Theoretical and Applied Genetics, 2006, 112, 269-277.	3.6	31
268	A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (<i>Lactuca sativa</i>) Tj ETQq0 0 Molecular Ecology, 2012, 21, 2640-2654.	0 rgBT /O 3.9	verlock 10 Tf 5 31
269	Screening for new sources of resistance to Clavibacter michiganensis subsp. michiganensis (Cmm) in tomato. Euphytica, 2013, 190, 309-317.	1.2	31
270	Large subclonal variation in <i><scp>P</scp>hytophthora infestans</i> populations associated with <scp>E</scp> cuadorian potato landraces. Plant Pathology, 2013, 62, 1081-1088.	2.4	31

#	Article	IF	CITATIONS
271	Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum) Tj ETQq1 1 0.784314	rgBT /C	Dverlock 10 in
272	Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. Trends in Plant Science, 2022, 27, 69-79.	8.8	31
273	Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell, Tissue and Organ Culture, 1998, 53, 197-204.	2.3	30
274	Physiological and genetic control of tuber formation. Potato Research, 1999, 42, 313-331.	2.7	30
275	An Accurate In Vitro Assay for High-Throughput Disease Testing of Phytophthora infestans in Potato. Plant Disease, 2005, 89, 1263-1267.	1.4	30
276	Multi-environment QTL analysis of plant and flower morphological traits in tetraploid rose. Theoretical and Applied Genetics, 2018, 131, 2055-2069.	3.6	30
277	The European Union Court's Advocate General's Opinion and new plant breeding techniques. Nature Biotechnology, 2018, 36, 573-575.	17.5	30
278	Quantifying the Power and Precision of QTL Analysis in Autopolyploids Under Bivalent and Multivalent Genetic Models. G3: Genes, Genomes, Genetics, 2019, 9, 2107-2122.	1.8	30
279	Pinpointing towards improved transformation and regeneration of cassava (Manihot esculenta) Tj ETQq1 1 0.7843	314 rgB 3.6	T /Qyerlock 1
280	Temporal dynamics of tuber formation and related processes in a crossing population of potato (Solanum tuberosum). Annals of Applied Biology, 2003, 143, 175-186.	2.5	29
281	Detection and Quantification of Leveillula taurica Growth in Pepper Leaves. Phytopathology, 2013, 103, 623-632.	2.2	29
282	â€~Schmidt's Antonovka' is identical to â€~Common Antonovka', an apple cultivar widely used in Russia in breeding for biotic and abiotic stresses. Tree Genetics and Genomes, 2014, 10, 261-271.	1.6	29
283	Graphical genotyping as a method to map Ny (o,n)sto and Gpa5 using a reference panel of tetraploid potato cultivars. Theoretical and Applied Genetics, 2017, 130, 515-528.	3.6	29
284	Functional characterization of cucumber (Cucumis sativus L.) Clade V MLO genes. BMC Plant Biology, 2017, 17, 80.	3.6	29
285	Expression Analysis of a Family of nsLTP Genes Tissue Specifically Expressed throughout the Plant and during Potato Tuber Life Cycle. Plant Physiology, 2002, 129, 1494-1506.	4.8	28
286	Dynamics of senescence-related QTLs in potato. Euphytica, 2012, 183, 289-302.	1.2	28
287	Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments. Ecology and Evolution, 2014, 4, 2395-2409.	1.9	28

288 Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
289	Effectorâ€mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytologist, 2017, 216, 915-926.	7.3	28
290	Ethylene and Abscisic Acid Signaling Pathways Differentially Influence Tomato Resistance to Combined Powdery Mildew and Salt Stress. Frontiers in Plant Science, 2016, 7, 2009.	3.6	28
291	Engineering Potato Starch with a Higher Phosphate Content. PLoS ONE, 2017, 12, e0169610.	2.5	28
292	Development of the GlutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ-irradiation or CRISPR/Cas9. Journal of Cereal Science, 2019, 88, 157-166.	3.7	28
293	Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can alter the morphology of amylose-free potato starch granules during biosynthesis. Transgenic Research, 2007, 16, 645-656.	2.4	27
294	Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants. Journal of Plant Research, 2007, 120, 605-617.	2.4	27
295	Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato. BMC Plant Biology, 2008, 8, 34.	3.6	27
296	Prediction of sweet pepper (Capsicum annuum) flavor over different harvests. Euphytica, 2012, 187, 117-131.	1.2	26
297	Genetic Diversity of Salt Tolerance in Miscanthus. Frontiers in Plant Science, 2017, 8, 187.	3.6	26
298	Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. Journal of Plant Physiology, 2019, 241, 153029.	3.5	26
299	The NLR Protein Encoded by the Resistance Gene Ty-2 Is Triggered by the Replication-Associated Protein Rep/C1 of Tomato Yellow Leaf Curl Virus. Frontiers in Plant Science, 2020, 11, 545306.	3.6	26
300	Pectin — the Hairy Thing. , 2003, , 47-59.		25
301	Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling. Theoretical and Applied Genetics, 2008, 117, 1379-1388.	3.6	25
302	Construction of chromosomal recombination maps of three genomes of lilies (<i>Lilium</i>) based on GISH analysis. Genome, 2009, 52, 238-251.	2.0	25
303	SNP markers retrieval for a non-model species: a practical approach. BMC Research Notes, 2012, 5, 79.	1.4	25
304	Cell Wall Diversity in Forage Maize: Genetic Complexity and Bioenergy Potential. Bioenergy Research, 2015, 8, 187-202.	3.9	25
305	Effect of kilning and milling on the dough-making properties ofÂoatÂflour. LWT - Food Science and Technology, 2015, 63, 960-965.	5.2	25
306	Distribution of P1(D1) wart disease resistance in potato germplasm and GWAS identification of haplotype-specific SNP markers. Theoretical and Applied Genetics, 2020, 133, 1859-1871.	3.6	25

#	Article	IF	CITATIONS
307	Phenylalanine and tyrosine accumulating cell lines of a dihaploid potato selected by resistance to 5-methyltryptophan. Plant Cell Reports, 1985, 4, 151-154.	5.6	24
308	Map- vs. homology-based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew. Euphytica, 2008, 162, 91-98.	1.2	24
309	Genomic regions in crop–wild hybrids of lettuce are affected differently in different environments: implications for crop breeding. Evolutionary Applications, 2012, 5, 629-640.	3.1	24
310	Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics, 2013, 14, 840.	2.8	24
311	Overexpression of IRM1 Enhances Resistance to Aphids in Arabidopsis thaliana. PLoS ONE, 2013, 8, e70914.	2.5	24
312	Genome-wide association analysis in tetraploid potato reveals four QTLs for protein content. Molecular Breeding, 2019, 39, 1.	2.1	24
313	Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits. Genes, 2020, 11, 1278.	2.4	24
314	Differential responses to salt stress in ion dynamics, growth and seed yield of European quinoa varieties. Environmental and Experimental Botany, 2020, 177, 104146.	4.2	24
315	The dosage effect of the wildtype GBSS allele is linear for GBSS activity but not for amylose content: absence of amylose has a distinct influence on the physico-chemical properties of starch. Theoretical and Applied Genetics, 1996, 92, 121-127.	3.6	24
316	Development of a plant regeneration system based on friable embryogenic callus in the ornamental Alstroemeria. Plant Cell Reports, 2000, 19, 529-534.	5.6	23
317	Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop–wild hybrids under drought, salinity and nutrient deficiency conditions. Theoretical and Applied Genetics, 2012, 125, 1097-1111.	3.6	23
318	High throughput phenotyping for aphid resistance in large plant collections. Plant Methods, 2012, 8, 33.	4.3	23
319	Genomic and environmental selection patterns in two distinct lettuce crop–wild hybrid crosses. Evolutionary Applications, 2013, 6, 569-584.	3.1	23
320	Transcriptome Analysis of Gerbera hybrida Including in silico Confirmation of Defense Genes Found. Frontiers in Plant Science, 2016, 7, 247.	3.6	23
321	Optimisation of droplet digital PCR for determining copy number variation of α-gliadin genes in mutant and gene-edited polyploid bread wheat. Journal of Cereal Science, 2020, 92, 102903.	3.7	23
322	Regeneration and transformation of potato by Agrobacterium tumefaciens. , 1991, , 301-309.		23
323	Crucial factors for the feasibility of commercial hybrid breeding in food crops. Nature Plants, 2022, 8, 463-473.	9.3	23
324	Blue light increases anthocyanin content and delays fruit ripening in purple pepper fruit. Postharvest Biology and Technology, 2022, 192, 112024.	6.0	23

#	Article	IF	CITATIONS
325	Overexpression of two different potato UDP-Glc 4-epimerases can increase the galactose content of potato tuber cell walls. Plant Science, 2004, 166, 1097-1104.	3.6	22
326	Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues. Journal of Plant Physiology, 2017, 208, 52-60.	3.5	22
327	Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels. BMC Genomics, 2017, 18, 406.	2.8	22
328	Stability of Cell Wall Composition and Saccharification Efficiency in Miscanthus across Diverse Environments. Frontiers in Plant Science, 2016, 7, 2004.	3.6	22
329	Cenetic transformation of Alstroemeria using particle bombardment. Molecular Breeding, 2000, 6, 369-377.	2.1	21
330	In situ analysis of enzymes involved in sucrose to hexose-phosphate conversion during stolon-to-tuber transition of potato. Physiologia Plantarum, 2002, 115, 303-310.	5.2	21
331	Host plant resistance towards the cabbage whitefly in Brassica oleracea and its wild relatives. Euphytica, 2015, 202, 297-306.	1.2	21
332	Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Molecular Breeding, 2017, 37, 13.	2.1	21
333	QTL mapping in diploid potato by using selfed progenies of the cross S. tuberosum × S. chacoense. Euphytica, 2018, 214, 121.	1.2	21
334	Genetic mapping of tuber size distribution and marketable tuber yield under drought stress in potatoes. Euphytica, 2019, 215, 1.	1.2	21
335	Isolation of a Gene Encoding a Copper Chaperone for the Copper/Zinc Superoxide Dismutase and Characterization of Its Promoter in Potato. Plant Physiology, 2003, 133, 618-629.	4.8	20
336	Regeneration of Pea (Pisum sativum L.) by a cyclic organogenic system. Plant Cell Reports, 2004, 23, 453-460.	5.6	20
337	GpaXI tar l originating from Solanum tarijense is a major resistance locus to Globodera pallida and is localised on chromosome 11 of potato. Theoretical and Applied Genetics, 2009, 119, 1477-1487.	3.6	20
338	Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC Plant Biology, 2012, 12, 43.	3.6	20
339	Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level. Molecular Plant Pathology, 2012, 13, 148-159.	4.2	20
340	Phenotypic, Molecular, and Pathological Characterization of Colletotrichum acutatum Associated with Andean Lupine and Tamarillo in the Ecuadorian Andes. Plant Disease, 2013, 97, 819-827.	1.4	20
341	QTL mapping of thrips resistance in pepper. Theoretical and Applied Genetics, 2015, 128, 1945-1956.	3.6	20
342	Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC Plant Biology, 2017, 17, 235.	3.6	20

#	Article	IF	CITATIONS
343	Expression of a wild-type GBSS gene introduced into an amylose-free potato mutant by Agrobacterium tumefaciens and the inheritance of the inserts at the microsporic level. Theoretical and Applied Genetics, 1994, 88-88, 369-375.	3.6	19
344	Isolation and functional characterization of a stolon specific promoter from potato (Solanum) Tj ETQq0 0 0 rg	BT /Overloc	k 10 Tf 50 702
345	Influence of plant growth stage on resistance to anthracnose in Andean lupin (Lupinus mutabilis). Crop and Pasture Science, 2015, 66, 729.	1.5	19
346	Bioethanol from maize cell walls: genes, molecular tools, and breeding prospects. GCB Bioenergy, 2015, 7, 591-607.	5.6	19
347	Inheritance and QTL analysis of the determinants of flower color in tetraploid cut roses. Molecular Breeding, 2016, 36, 143.	2.1	19
348	Morphological and physiological responses of the potato stem transport tissues to dehydration stress. Planta, 2020, 251, 45.	3.2	19
349	Allelic variants of the NLR protein Rpiâ€chc1 differentially recognize members of the <i>Phytophthora infestans</i> PexRD12/31 effector superfamily through the leucineâ€rich repeat domain. Plant Journal, 2021, 107, 182-197.	5.7	19
350	Fructan as a New Carbohydrate Sink in Transgenic Potato Plants. Plant Cell, 1994, 6, 561.	6.6	18
351	Targeted transcript mapping for agronomic traits in potato. Journal of Experimental Botany, 2007, 58, 2761-2774.	4.8	18
352	Accumulation of multiple-repeat starch-binding domains (SBD2–SBD5) does not reduce amylose content of potato starch granules. Planta, 2007, 225, 919-933.	3.2	18
353	A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome. BMC Genomics, 2011, 12, 594.	2.8	18
354	De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from Total DNA Sequences. Frontiers in Plant Science, 2017, 8, 1271.	3.6	18
355	Genetical genomics of quality related traits in potato tubers using proteomics. BMC Plant Biology, 2018, 18, 20.	3.6	18
356	Detecting quantitative trait loci and exploring chromosomal pairing in autopolyploids using polyqtlR. Bioinformatics, 2021, 37, 3822-3829.	4.1	18
357	Understanding the Effectiveness of Genomic Prediction in Tetraploid Potato. Frontiers in Plant Science, 2021, 12, 672417.	3.6	18
358	GBSS T-DNA inserts giving partial complementation of the amylose-free potato mutant can also cause co-suppression of the endogenous GBSS gene in a wild-type background. Plant Molecular Biology, 1996, 31, 731-739.	3.9	17
359	Production of dextran in transgenic potato plants. Transgenic Research, 2005, 14, 385-395.	2.4	17
360	Production of small starch granules by expression of a tandem-repeat of a family 20 starch-binding domain (SBD3-SBD5) in an amylose-free potato genetic background. Functional Plant Biology, 2012, 39, 146.	2.1	17

#	Article	IF	CITATIONS
361	Expression of an engineered granuleâ€bound <i><scp>E</scp>scherichia coli</i> glycogen branching enzyme in potato results in severe morphological changes in starch granules. Plant Biotechnology Journal, 2013, 11, 470-479.	8.3	17
362	Normal adult survival but reduced Bemisia tabaci oviposition rate on tomato lines carrying an introgression from S. habrochaites. BMC Genetics, 2014, 15, 142.	2.7	17
363	Down-regulation of acetolactate synthase compromises Ol-1- mediated resistance to powdery mildew in tomato. BMC Plant Biology, 2014, 14, 32.	3.6	17
364	Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up. Theoretical and Applied Genetics, 2014, 127, 1805-1816.	3.6	17
365	Maize feedstocks with improved digestibility reduce the costs and environmental impacts of biomass pretreatment and saccharification. Biotechnology for Biofuels, 2016, 9, 63.	6.2	17
366	The assessment of field trials in GMO research around the world and their possible integration in field trials for variety registration. Transgenic Research, 2018, 27, 321-329.	2.4	17
367	Comparative Subsequence Sets Analysis (CoSSA) is a robust approach to identify haplotype specific SNPs; mapping and pedigree analysis of a potato wart disease resistance gene Sen3. Plant Methods, 2019, 15, 60.	4.3	17
368	The ROSEA1 and DELILA transcription factors control anthocyanin biosynthesis in Nicotiana benthamiana and Lilium flowers. Scientia Horticulturae, 2019, 243, 327-337.	3.6	17
369	Patterns of Transmission Ratio Distortion in Interspecific Lettuce Hybrids Reveal a Sex-Independent Gametophytic Barrier. Genetics, 2019, 211, 263-276.	2.9	17
370	Genetic Variation and Combining Ability Analysis of Bruising Sensitivity in Agaricus bisporus. PLoS ONE, 2013, 8, e76826.	2.5	17
371	Characterization and localization of repetitive DNA sequences in the ornamental Alstroemeria aurea Graham. Theoretical and Applied Genetics, 1997, 94, 982-990.	3.6	16
372	Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta) Tj ETQq0 0	0 rgBT /C	verlock 10 T
373	Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source-sink tissues in a segregating potato population. BMC Plant Biology, 2012, 12, 17.	3.6	16
374	Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome. Molecular Genetics and Genomics, 2014, 289, 1307-1319.	2.1	16
375	Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip. Molecular Breeding, 2015, 35, 122.	2.1	16
376	Simultaneous analysis of a series of phosphorylated sugars in small tissue samples by anion exchange chromatography and pulsed amperometric detection. Phytochemical Analysis, 1999, 10, 107-112.	2.4	15
377	Characterisation of distant Alstrogmeria hybrids: application of highly repetitive DNA sequences from A. ligtu ssp. ligtu. Annals of Applied Biology, 2003, 142, 277-283.	2.5	15
378	Mutan produced in potato amyloplasts adheres to starch granules. Plant Biotechnology Journal, 2005, 3, 341-351.	8.3	15

#	Article	IF	CITATIONS
379	Isolation of protoplasts, and culture and regeneration into plants in Alstroemeria. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 505-510.	2.1	15
380	Efficient production of transgenic Alstroemeria plants by using Agrobacterium tumefaciens. Annals of Applied Biology, 2007, 151, 401-412.	2.5	15
381	Moderate abiotic stresses increase rhizome growth and outgrowth of axillary buds in Alstroemeria cultured in vitro. Plant Cell, Tissue and Organ Culture, 2012, 110, 395-400.	2.3	15
382	Vector integration in triple R gene transformants and the clustered inheritance of resistance against potato late blight. Transgenic Research, 2013, 22, 315-325.	2.4	15
383	Homologues of potato chromosome 5 show variable collinearity in the euchromatin, but dramatic absence of sequence similarity in the pericentromeric heterochromatin. BMC Genomics, 2015, 16, 374.	2.8	15
384	Aphid resistance in Capsicum maps to a locus containing LRR-RLK gene analogues. Theoretical and Applied Genetics, 2020, 133, 227-237.	3.6	15
385	Options to Reform the European Union Legislation on GMOs: Risk Governance. Trends in Biotechnology, 2020, 38, 349-351.	9.3	15
386	The protein composition of the cytoplasmic membrane of aerobically and anaerobically grownEscherichia coli. Journal of Bioenergetics and Biomembranes, 1984, 16, 295-307.	2.3	14
387	Efficient Somatic Embryogenesis in Alstroemeria. Plant Cell, Tissue and Organ Culture, 2006, 86, 233-238.	2.3	14
388	Phenotypic Analyses of Multi-Environment Data for Two Diverse Tetraploid Potato Collections: Comparing an Academic Panel with an Industrial Panel. Potato Research, 2011, 54, 157-181.	2.7	14
389	Development of a standard test for dough-making properties of oat cultivars. Journal of Cereal Science, 2014, 59, 56-61.	3.7	14
390	Expression of an amylosucrase gene in potato results in larger starch granules with novel properties. Planta, 2014, 240, 409-421.	3.2	14
391	Systems genetics reveals key genetic elements of drought induced gene regulation in diploid potato. Plant, Cell and Environment, 2016, 39, 1895-1908.	5.7	14
392	Genetically engineering <scp><i>Crambe abyssinica</i></scp> —A potentially highâ€value oil crop for salt land improvement. Land Degradation and Development, 2018, 29, 1096-1106.	3.9	14
393	The <i>Synchytrium endobioticum</i> AvrSen1 Triggers a Hypersensitive Response in <i>Sen1</i> Potatoes While Natural Variants Evade Detection. Molecular Plant-Microbe Interactions, 2019, 32, 1536-1546.	2.6	14
394	Analysis of QTL DM4.1 for Downy Mildew Resistance in Cucumber Reveals Multiple subQTL: A Novel RLK as Candidate Gene for the Most Important subQTL. Frontiers in Plant Science, 2020, 11, 569876.	3.6	14
395	Silencing susceptibility genes in potato hinders primary infection with <i>Phytophthora infestans</i> at different stages. Horticulture Research, 2022, 9, .	6.3	14

Gene silencing in potato: allelic differences and effect of ploidy. , 2000, 43, 377-386.

13

#	Article	IF	CITATIONS
397	High Resolution Mapping of a Novel Late Blight Resistance Gene Rpi-avl1, from the Wild Bolivian Species Solanum avilesii. American Journal of Potato Research, 2011, 88, 511-519.	0.9	13
398	Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. BMC Plant Biology, 2013, 13, 146.	3.6	13
399	Qualitative and Quantitative Resistance against Early Blight Introgressed in Potato. Biology, 2021, 10, 892.	2.8	13
400	Antisense suppression of a potato alpha-SNAP homologue leads to alterations in cellular development and assimilate distribution. Plant Molecular Biology, 2000, 43, 473-482.	3.9	12
401	Analysis of genes differentially expressed during potato tuber life cycle and isolation of their promoter regions. Plant Science, 2004, 166, 423-433.	3.6	12
402	Expression of alternansucrase in potato plants. Biotechnology Letters, 2007, 29, 1135-1142.	2.2	12
403	Fine mapping of two major QTLs conferring resistance to powdery mildew in tomato. Euphytica, 2012, 184, 223-234.	1.2	12
404	Fine mapping quantitative resistances to downy mildew in lettuce revealed multiple sub-QTLs with plant stage dependent effects reducing or even promoting the infection. Theoretical and Applied Genetics, 2013, 126, 2995-3007.	3.6	12
405	Characterization of B chromosomes in Lilium hybrids through GISH and FISH. Plant Systematics and Evolution, 2014, 300, 1771-1777.	0.9	12
406	Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button) Tj ETQq0 0 0 rgBT /C	verlock 10 3.0	D Tf 50 382 Td 12
407	Breeding for postharvest performance in chrysanthemum by selection against storage-induced degreening of disk florets. Postharvest Biology and Technology, 2017, 124, 45-53.	6.0	12
408	Family-Based Haplotype Estimation and Allele Dosage Correction for Polyploids Using Short Sequence Reads. Frontiers in Genetics, 2019, 10, 335.	2.3	12
409	A rapid method to screen wild Solanum for resistance to early blight. European Journal of Plant Pathology, 2019, 154, 109-114.	1.7	12
410	Expression of an engineered granule-bound Escherichia coli maltose acetyltransferase in wild-type and amf potato plants. Plant Biotechnology Journal, 2007, 5, 134-145.	8.3	11
411	Frequency of a natural truncated allele of MdMLO19 in the germplasm of Malus domestica. Molecular Breeding, 2017, 37, 7.	2.1	11
412	Etiolation and flooding of donor plants enhance the capability of Arabidopsis explants to root. Plant Cell, Tissue and Organ Culture, 2017, 130, 531-541.	2.3	11
413	Exploring natural genetic variation in tomato sucrose synthases on the basis of increased kinetic properties. PLoS ONE, 2018, 13, e0206636.	2.5	11
414	Development of an <i>inÂvitro</i> protocol to screen <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> pathogenicity in different <i>Solanum</i> species. Plant Pathology, 2019, 68, 42-48.	2.4	11

#	Article	IF	CITATIONS
415	Identification of QTLs Associated with Nitrogen Use Efficiency and Related Traits in a Diploid Potato Population. American Journal of Potato Research, 2020, 97, 185-201.	0.9	11
416	Divergent Evolution of PcF/SCR74 Effectors in Oomycetes Is Associated with Distinct Recognition Patterns in Solanaceous Plants. MBio, 2020, 11, .	4.1	11
417	Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR. Plant Physiology and Biochemistry, 2009, 47, 1116-1118.	5.8	10
418	High-Resolution Mapping of Two Broad-Spectrum Late Blight Resistance Genes from Two Wild Species of the Solanum circaeifolium Group. Potato Research, 2012, 55, 109-123.	2.7	10
419	Constitutive overexpression of the pollen specific gene SKS13 in leaves reduces aphid performance on Arabidopsis thaliana. BMC Plant Biology, 2014, 14, 217.	3.6	10
420	Regeneration and transformation of Crambe abyssinica. BMC Plant Biology, 2014, 14, 235.	3.6	10
421	Detection of induced mutations in <i>Ca<scp>FAD</scp>2</i> genes by nextâ€generation sequencing leading to the production of improved oil composition in <i>Crambe abyssinica</i> . Plant Biotechnology Journal, 2015, 13, 471-481.	8.3	10
422	Haplotype assembly of autotetraploid potato using integer linear programing. Bioinformatics, 2019, 35, 3279-3286.	4.1	10
423	Food and environmental safety assessment of new plant varieties after the European Court decision: Process-triggered or product-based?. Trends in Food Science and Technology, 2019, 88, 24-32.	15.1	10
424	Genetic Diversity of Potato Cultivars for Nitrogen Use Efficiency Under Contrasting Nitrogen Regimes. Potato Research, 2020, 63, 267-290.	2.7	10
425	The ability to manipulate ROS metabolism in pepper may affect aphid virulence. Horticulture Research, 2020, 7, 6.	6.3	10
426	The amino acid permease (<i>AAP</i>) genes <i>CsAAP2A</i> and <i>SIAAP5A</i> / <i>B</i> are required for oomycete susceptibility in cucumber and tomato. Molecular Plant Pathology, 2021, 22, 658-672.	4.2	10
427	High-Resolution Analysis of Growth and Transpiration of Quinoa Under Saline Conditions. Frontiers in Plant Science, 2021, 12, 634311.	3.6	10
428	<i>De novo</i> whole-genome assembly of <i>Chrysanthemum makinoi</i> , a key wild chrysanthemum. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	10
429	Drought Stress Interacts With Powdery Mildew Infection in Tomato. Frontiers in Plant Science, 2022, 13, 845379.	3.6	10
430	Expression of wild-type GBSS transgenes in the off-spring of partially and fully complementedamylose-free transformants of potato. Molecular Breeding, 1996, 2, 211-218.	2.1	9
431	Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species. Chromosome Research, 2002, 10, 389-398.	2.2	9
432	Elucidation of intergenomic recombination and chromosome translocation: meiotic evidence from interspecific hybrids of Lilium through GISH analysis. Euphytica, 2013, 194, 361-370.	1.2	9

#	Article	IF	CITATIONS
433	Natural lossâ€ofâ€function mutation of EDR1 conferring resistance to tomato powdery mildew in A rabidopsis thaliana accession C24. Molecular Plant Pathology, 2015, 16, 71-82.	4.2	9
434	Bidirectional backcrosses between wild and cultivated lettuce identify loci involved in nonhost resistance to downy mildew. Theoretical and Applied Genetics, 2018, 131, 1761-1776.	3.6	9
435	High light accelerates potato flowering independently of the FT-like flowering signal StSP3D. Environmental and Experimental Botany, 2019, 160, 35-44.	4.2	9
436	Options to Reform the European Union Legislation on GMOs: Post-authorization and Beyond. Trends in Biotechnology, 2020, 38, 465-467.	9.3	9
437	Title is missing!. Molecular Breeding, 1998, 4, 343-358.	2.1	8
438	Pyramiding of Meloidogyne hapla Resistance Genes in Potato Does Not Result in an Increase of Resistance. Potato Research, 2009, 52, 331-340.	2.7	8
439	Marker2sequence, mine your QTL regions for candidate genes. Bioinformatics, 2012, 28, 1921-1922.	4.1	8
440	Isolation and characterization of the omega-6 fatty acid desaturase (FAD2) gene family in the allohexaploid oil seed crop Crambe abyssinica Hochst. Molecular Breeding, 2013, 32, 517-531.	2.1	8
441	Mapping quantitative trait loci for tissue culture response in VCS3M-DH population of Brassica rapa. Plant Cell Reports, 2013, 32, 1251-1261.	5.6	8
442	QTLTableMiner++: semantic mining of QTL tables in scientific articles. BMC Bioinformatics, 2018, 19, 183.	2.6	8
443	A Hitchhiker's guide to the potato wart disease resistance galaxy. Theoretical and Applied Genetics, 2020, 133, 3419-3439.	3.6	8
444	Improving Pathogen Resistance by Exploiting Plant Susceptibility Genes in Coffee (Coffea spp.). Agronomy, 2020, 10, 1928.	3.0	8
445	Low CO2 Levels Are Detrimental for In Vitro Plantlets through Disturbance of Photosynthetic Functionality and Accumulation of Reactive Oxygen Species. Horticulturae, 2022, 8, 44.	2.8	8
446	Expression of a cassava granuleâ€bound starch synthase gene in the amyloseâ€free potato only partially restores amylose content. Plant, Cell and Environment, 1999, 22, 1311-1318.	5.7	7
447	Possibilities and Challenges of the Potato Genome Sequence. Potato Research, 2014, 57, 327-330.	2.7	7
448	Understanding the genetic basis of potato development using a multi-trait QTL analysis. Euphytica, 2015, 204, 229-241.	1.2	7
449	Evaluation of both targeted and non-targeted cell wall polysaccharides in transgenic potatoes. Carbohydrate Polymers, 2017, 156, 312-321.	10.2	7
450	Genetic Characterization of <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> Population in Turkey. Plant Disease, 2018, 102, 300-308.	1.4	7

#	Article	IF	CITATIONS
451	High-Altitude Wild Species Solanum arcanum LA385—A Potential Source for Improvement of Plant Growth and Photosynthetic Performance at Suboptimal Temperatures. Frontiers in Plant Science, 2019, 10, 1163.	3.6	7
452	Hypolignification: A Decisive Factor in the Development of Hyperhydricity. Plants, 2021, 10, 2625.	3.5	7
453	Deciphering resistance to Zymoseptoria tritici in the Tunisian durum wheat landrace accession â€~Agili39'. BMC Genomics, 2022, 23, 372.	2.8	7
454	Development of amylose-free (amf) monoploid potatoes as new basic material for mutation breeding in vitro. Potato Research, 2000, 43, 179-189.	2.7	6
455	Title is missing!. Euphytica, 2001, 120, 71-83.	1.2	6
456	Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study primary cell wall biosynthesis in potato. Plant Physiology and Biochemistry, 2003, 41, 965-971.	5.8	6
457	Hormonal control of the outgrowth of axillary buds in Alstroemeria cultured in vitro. Biologia Plantarum, 2011, 55, .	1.9	6
458	Functional Characterization of a Syntaxin Involved in Tomato (Solanum lycopersicum) Resistance against Powdery Mildew. Frontiers in Plant Science, 2017, 8, 1573.	3.6	6
459	Discovery and Characterization of a Novel Tomato mlo Mutant from an EMS Mutagenized Micro-Tom Population. Genes, 2021, 12, 719.	2.4	6
460	Micropropagation of Manihot esculenta Crantz (Cassava). Biotechnology in Agriculture and Forestry, 1997, , 77-102.	0.2	6
461	PRECISE: Software for Prediction of cis-Acting Regulatory Elements. Journal of Heredity, 2005, 96, 618-622.	2.4	5
462	Presence of an intron in inverted repeat constructs does not necessarily have an effect on efficiency of post-transcriptional gene silencing. Molecular Breeding, 2006, 17, 307-316.	2.1	5
463	Starch Modification by Biotechnology. , 2014, , 79-102.		5
464	A Stringent and Broad Screen of Solanum spp. tolerance Against Erwinia Bacteria Using a Petiole Test. American Journal of Potato Research, 2014, 91, 204-214.	0.9	5
465	Using probabilistic genotypes in linkage analysis of polyploids. Theoretical and Applied Genetics, 2021, 134, 2443-2457.	3.6	5
466	Towards Unravelling the Biological Significance of the Individual Components of Pectic Hairy Regions in Plants. , 2003, , 15-34.		5
467	Transcriptomic Responses of Potato to Drought Stress. Potato Research, 2022, 65, 289-305.	2.7	5
468	Phenotyping of a diverse tomato collection for postharvest shelf-life. Postharvest Biology and Technology, 2022, 188, 111908.	6.0	5

# /	Article	IF	CITATIONS
	mRNA localization in in vitro grown microtubers of potatoas a tool to study starch metabolism. Plant Physiology and Biochemistry, 2001, 39, 161-166.	5.8	4
	A tandem CBM25 domain of α-amylase from Microbacterium aurum as potential tool for targeting proteins to starch granules during starch biosynthesis. BMC Biotechnology, 2017, 17, 86.	3.3	4
471	The effect of isolation methods of tomato pollen on the results of metabolic profiling. Metabolomics, 2019, 15, 11.	3.0	4
	Coincidence of potato CONSTANS (StCOL1) expression and light cannot explain nightâ€break repression of tuberization. Physiologia Plantarum, 2019, 167, 250-263.	5.2	4
473 l	Editorial: Leeway to Operate With Plant Genetic Resources. Frontiers in Plant Science, 2020, 11, 911.	3.6	4
474 (Genetic variation and correlation studies between micronutrient (Fe and Zn), protein content and yield attributing traits in mungbean (Vigna. radiata L.). Legume Research, 0, , .	0.1	4
	Genetic mapping of the tomato quality traits brix and blossom-end rot under supplemental LED and HPS lighting conditions. Euphytica, 2021, 217, 1.	1.2	4
	Genomic in situ hybridization analysis of a trigenomic hybrid involving Solanum and Lycopersicon species. Genome, 2001, 44, 299-304.	2.0	3
	Sprouting of seed tubers during cold storage and its influence on tuber formation, flowering and the duration of the life cycle in a diploid population of potato. Potato Research, 2003, 46, 9-25.	2.7	3
478 l	MQ2: visualizing multi-trait mapped QTL results. Molecular Breeding, 2013, 32, 981-985.	2.1	3
479	Cross-platform comparative analyses of genetic variation in amino acid content in potato tubers. Metabolomics, 2014, 10, 1239-1257.	3.0	3
480	Screening for recombinants of Crambe abyssinica after transformation by the pMF1 marker-free vector based on chemical selection and meristematic regeneration. Scientific Reports, 2015, 5, 14033.	3.3	3
	Extent of genotypic variation for maize cell wall bioconversion traits across environments and among hybrid combinations. Euphytica, 2015, 206, 501-511.	1.2	3
	Heterologous expression of two <i>Arabidopsis</i> starch dikinases in potato. Starch/Staerke, 2018, 70, 1600324.	2.1	3
	Extracting knowledge networks from plant scientific literature: potato tuber flesh color as an exemplary trait. BMC Plant Biology, 2021, 21, 198.	3.6	3
	Allelic variation for alpha-Glucan Water Dikinase is associated with starch phosphate content in tetraploid potato. Plant Molecular Biology, 2022, 108, 469-480.	3.9	3
	Genetic Diversity of Mungbean (Vigna radiataL.) in Iron and Zinc Content as Impacted by Farmers' Varietal Selection in Northern India. Ecology of Food and Nutrition, 2013, 52, 148-162.	1.6	2

Functional characterization of the powdery mildew susceptibility gene SmMLO1 in eggplant (Solanum) Tj ETQq0 0.0 rgBT /Overlock 10

#	Article	IF	CITATIONS
487	Dissecting the Genotypic Variation of Growth Responses to Far-Red Radiation in Tomato. Frontiers in Plant Science, 2020, 11, 614714.	3.6	2
488	Expression of an (Engineered) 4,6-α-Clucanotransferase in Potato Results in Changes in Starch Characteristics. PLoS ONE, 2016, 11, e0166981.	2.5	2
489	Genotype-by-Environment Interaction for Quantitative Trait Loci Affecting Nitrogen Use Efficiency and Associated Traits in Potato. Potato Research, 2022, 65, 777-807.	2.7	2
490	Both major QTL and plastidâ€based inheritance of intumescence in diverse tomato (<scp><i>Solanum) Tj ETQq0 574-584.</i></scp>	0 0 rgBT / 1.9	Overlock 10 2
491	Over-expression of a YUCCA-Like Gene Results in Altered Shoot and Stolon Branching and Reduced Potato Tuber Size. Potato Research, 0, , .	2.7	2
492	Correction: A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome. BMC Genomics, 2012, 13, 423.	2.8	1
493	Differential Response of Mungbean (Vigna radiata L.) Varieties to Changes in Environmental Conditions. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2343-2350.	0.1	1
494	The role of scale explants in the growth of regenerating lily bulblets in vitro. Plant Cell, Tissue and Organ Culture, 2022, 149, 589-598.	2.3	1
495	Expression of anthocyanin biosynthesis-related genes during flower development in Lilium spp Plant Gene, 2022, , 100372.	2.3	1
496	Methods for Analysing mRNA Expression. , 0, , 163-407.		0
497	Technological Feasibility. , 2006, , 51-98.		0
498	Microbial starch-binding domains are superior to granule-bound starch synthase I for anchoring luciferase to potato starch granules. Progress in Natural Science: Materials International, 2006, 16, 1295-1299.	4.4	0
499	Potential and Future of Novel Molecular Breeding Techniques in Plant Breeding. Procedia Environmental Sciences, 2015, 29, 302.	1.4	0
500	Mapping Recombination Landscape and Basidial Spore Number in the Button Mushroom Agaricus bisporus. Frontiers in Fungal Biology, 2021, 2, .	2.0	0
501	Gene silencing in potato: allelic differences and effect of ploidy. , 2000, , 257-266.		0
502	Breeding for Improved and Novel Starch Characteristics in Potato. , 2007, , 405-408.		0
503	Stability Analysis in Mungbean (Vigna radiata L.) for Micronutrients (Fe & Zn) and Seed Yield. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 419-423.	0.1	0
504	Does tomato breeding for improved performance under LED supplemental lighting make sense?. Euphytica, 2022, 218, 1.	1.2	0