
Glenn Pastel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing Interfacial Resistance between Garnetâ€&tructured Solidâ€&tate Electrolyte and Liâ€Metal Anode by a Germanium Layer. Advanced Materials, 2017, 29, 1606042.	11.1	512
2	Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy and Environmental Science, 2017, 10, 1568-1575.	15.6	499
3	Muscleâ€Inspired Highly Anisotropic, Strong, Ionâ€Conductive Hydrogels. Advanced Materials, 2018, 30, e1801934.	11.1	408
4	Scalable and Highly Efficient Mesoporous Woodâ€Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. Advanced Functional Materials, 2018, 28, 1707134.	7.8	366
5	A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020, 368, 521-526.	6.0	357
6	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	4.7	336
7	3Dâ€Printed Allâ€Fiber Liâ€Ion Battery toward Wearable Energy Storage. Advanced Functional Materials, 2017, 27, 1703140.	7.8	270
8	Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials, 2016, 6, 1601122.	10.2	228
9	Highly Conductive, Lightweight, Lowâ€Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors. Advanced Energy Materials, 2017, 7, 1700595.	10.2	210
10	Interface Engineering for Garnetâ€Based Solidâ€State Lithiumâ€Metal Batteries: Materials, Structures, and Characterization. Advanced Materials, 2018, 30, e1802068.	11.1	204
11	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	10.2	196
12	An Electron/Ion Dualâ€Conductive Alloy Framework for Highâ€Rate and Highâ€Capacity Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1804815.	11.1	188
13	Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries. Advanced Energy Materials, 2018, 8, 1701963.	10.2	186
14	Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Advanced Energy Materials, 2018, 8, 1802398.	10.2	163
15	Hierarchically Porous, Ultrathick, "Breathable―Woodâ€Derived Cathode for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1701203.	10.2	161
16	<i>In Situ</i> Neutron Depth Profiling of Lithium Metal–Garnet Interfaces for Solid State Batteries. Journal of the American Chemical Society, 2017, 139, 14257-14264.	6.6	154
17	Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nature Catalysis, 2021, 4, 62-70.	16.1	153
18	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	7.3	151

GLENN PASTEL

#	Article	IF	CITATIONS
19	FeS ₂ Nanoparticles Embedded in Reduced Graphene Oxide toward Robust, Highâ€Performance Electrocatalysts. Advanced Energy Materials, 2017, 7, 1700482.	10.2	144
20	Natureâ€Inspired Triâ€Pathway Design Enabling Highâ€Performance Flexible Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802964.	10.2	121
21	Bioinspired Solarâ€Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil. Advanced Functional Materials, 2019, 29, 1900162.	7.8	116
22	Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 5919-5927.	4.0	91
23	Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries. Nano Letters, 2017, 17, 4917-4923.	4.5	89
24	Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Research, 2019, 12, 2259-2267.	5.8	85
25	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood. , 2019, 1, 354-361.		72
26	Scalable Dry Processing of Binder-Free Lithium-Ion Battery Electrodes Enabled by Holey Graphene. ACS Applied Energy Materials, 2019, 2, 2990-2997.	2.5	55
27	Flexible, Bio-Compatible Nanofluidic Ion Conductor. Chemistry of Materials, 2018, 30, 7707-7713.	3.2	54
28	Highly Efficient Water Treatment via a Wood-Based and Reusable Filter. , 2020, 2, 430-437.		50
29	A solid state energy storage device with supercapacitor–battery hybrid design. Journal of Materials Chemistry A, 2017, 5, 15266-15272.	5.2	31
30	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	5.2	28
31	In Situ, Fast, Highâ€Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix. Advanced Energy Materials, 2017, 7, 1601783.	10.2	27
32	Inverted battery design as ion generator for interfacing with biosystems. Nature Communications, 2017, 8, 15609.	5.8	21
33	Catalyst-Free <i>In Situ</i> Carbon Nanotube Growth in Confined Space <i>via</i> High Temperature Gradient. Research, 2018, 2018, 1793784.	2.8	7
34	A Sobering Examination of the Feasibility of Aqueous Aluminum Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 2436-2436.	0.0	0