
Jonathan T Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2495112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abstract P5-07-01: Proteogenomic analysis of differential chemotherapy responses in patient-derived xenografts of triple-negative breast cancer. Cancer Research, 2022, 82, P5-07-01-P5-07-01.	0.9	0
2	LINC00355 regulates p27KIP expression by binding to MENIN to induce proliferation in late-stage relapse breast cancer. Npj Breast Cancer, 2022, 8, 49.	5.2	4
3	Targeting kinome reprogramming in ESR1 fusion-driven metastatic breast cancer Journal of Clinical Oncology, 2022, 40, 1085-1085.	1.6	0
4	Abstract PD8-02: Kinome profiling of ER+ breast cancer PDXs identifies PKMYT1 as a marker of hormone independent growth and poor outcome. , 2021, , .		0
5	Abstract PS17-03: Recurrent activeESR1fusions render a diagnostic transcriptional signature in metastatic breast cancer. , 2021, , .		0
6	Proteogenomics drives therapeutic hypothesis generation for precision oncology. British Journal of Cancer, 2021, 125, 1-3.	6.4	8
7	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	16.8	189
8	Abstract 742: The integration of a structure-function rule and a transcriptional signature to assignESR1fusion activity in metastatic breast cancer. , 2021, , .		0
9	Abstract 2490: Optimizing treatment strategy for NF1-depleted estrogen receptor positive breast cancer. , 2021, , .		0
10	Abstract 2992: Proteogenomic characterization of triple-negative breast cancer patient-derived xenografts reveals molecular correlates of differential chemotherapy response and potential therapeutic targets to overcome resistance. , 2021, , .		0
11	Abstract 18: Molecular dissection of chemotherapy response in triple negative breast cancer (TNBC) using microscaled proteogenomics. , 2021, , .		0
12	A proteogenomic portrait of lung squamous cell carcinoma. Cell, 2021, 184, 4348-4371.e40.	28.9	170
13	Transcriptional Reprogramming Differentiates Active from Inactive ESR1 Fusions in Endocrine Therapy-Refractory Metastatic Breast Cancer. Cancer Research, 2021, 81, 6259-6272.	0.9	10
14	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	28.9	273
15	Neurofibromin Is an Estrogen Receptor-α Transcriptional Co-repressor in Breast Cancer. Cancer Cell, 2020, 37, 387-402.e7.	16.8	59
16	Abstract 5118: Proteogenomics characterization of HPV-negative head and neck squamous cell carcinomas. , 2020, , .		0
17	Abstract 5467: Outlier analysis to identify determinants of therapeutic resistance in breast cancer. , 2020, , .		0
18	Abstract 4385: Proteogenomics-driven synthetic lethality discovery to predict targetable protein dependencies induced by somatic deletions. , 2020, , .		0

Jonathan T Lei

#	Article	IF	CITATIONS
19	Abstract P6-04-04: Functional characterization of ESR1 fusions in breast cancer. , 2020, , .		1
20	Copy number alterations associated with clinical features in an underrepresented population with breast cancer. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e00750.	1.2	7
21	Endocrine therapy resistance: new insights. Breast, 2019, 48, S26-S30.	2.2	60
22	<i>ESR1</i> alterations and metastasis in estrogen receptor positive breast cancer. Journal of Cancer Metastasis and Treatment, 2019, 2019, .	0.8	62
23	Abstract 3479: Functional significance ofESR1fusions with diverse gene partners in endocrine therapy resistant breast cancer. , 2019, , .		0
24	Abstract 850: Evaluating preclinical efficacy of anti-HER2 drug combinations using ER+/HER2 mutant models. , 2019, , .		0
25	ESR1 fusions drive endocrine therapy resistance and metastasis in breast cancer. Molecular and Cellular Oncology, 2018, 5, e1526005.	0.7	16
26	DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11978-E11987.	7.1	40
27	Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Reports, 2018, 24, 1434-1444.e7.	6.4	73
28	Proteomic profiling identifies key coactivators utilized by mutant ERα proteins as potential new therapeutic targets. Oncogene, 2018, 37, 4581-4598.	5.9	51
29	Abstract 5240: Functional and therapeutic significance of ESR1 gene fusions in breast cancer. , 2018, , .		Ο
30	Abstract 1814: NF1 as an estrogen receptor-α co-repressor in breast cancer. , 2018, , .		0
31	Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer. Cancer Discovery, 2017, 7, 1168-1183.	9.4	58
32	Abstract P1-08-07: Assessing the impact of loss of NF1 protein on endocrine therapy resistance. , 2017, , .		0
33	Abstract 1033: Estrogen receptor gene fusions drive endocrine therapy resistance in estrogen receptor positive breast cancer. , 2017, , .		Ο
34	Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534, 55-62.	27.8	1,384
35	Mammary Ductal Environment Is Necessary for Faithful Maintenance of Estrogen Signaling in ER + Breast Cancer. Cancer Cell, 2016, 29, 249-250.	16.8	6
36	The Common Beta Chain Phosphorylation Axis Controls IL-5 Receptor Sub-cellular Distribution. Journal of Allergy and Clinical Immunology, 2011, 127, AB165-AB165.	2.9	0

Jonathan T Lei

#	Article	IF	CITATIONS
37	Three Lysine Residues in the Common β Chain of the Interleukin-5 Receptor Are Required for Janus Kinase (JAK)-dependent Receptor Ubiquitination, Endocytosis, and Signaling. Journal of Biological Chemistry, 2011, 286, 40091-40103.	3.4	16
38	βc Ubiquitination is a Molecular Signature for IL-5 Receptor Endocytosis and Signaling. Journal of Allergy and Clinical Immunology, 2010, 125, AB117.	2.9	0
39	IL-5 Receptor Trafficking Is Regulated By Tyrosine Phosphorylation. Journal of Allergy and Clinical Immunology, 2009, 123, 725-726.	2.9	0
40	Regulation of IL-5 Receptor Endosomal Trafficking by Ubiquitin. Journal of Allergy and Clinical Immunology, 2008, 121, 791.	2.9	0
41	Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRα gene in the X chromosome pseudoautosomal region 1. Journal of Experimental Medicine, 2008, 205, 2711-2716.	8.5	171
42	Separate endocytic pathways regulate IL-5 receptor internalization and signaling. Journal of Leukocyte Biology, 2008, 84, 499-509.	3.3	29
43	JAK kinases control IL-5 receptor ubiquitination, degradation, and internalization. Journal of Leukocyte Biology, 2007, 81, 1137-1148.	3.3	37
44	Interleukin-5 Receptor Endocytosis is Regulated by Two Distinct Pathways. Journal of Allergy and Clinical Immunology, 2007, 119, S234.	2.9	0
45	Endocytic pathways regulating down-regulation of the Interleukin-5 receptor. Journal of Allergy and Clinical Immunology, 2005, 115, S121.	2.9	0
46	Regulatory signals mediating down-regulation of the common beta chain of the IL-5, IL-3, and GM-CSF receptors*1. Journal of Allergy and Clinical Immunology, 2004, 113, S334.	2.9	0