Michele Visentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2495002/publications.pdf

Version: 2024-02-01

516710 377865 36 1,458 16 34 citations g-index h-index papers 36 36 36 2244 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome. Circulation Research, 2022, 130, 80-95.	4.5	9
2	Effects of acute administration of trimethylamine N-oxide on endothelial function: a translational study. Scientific Reports, 2022, 12 , .	3.3	4
3	Cholesterol stimulates the cellular uptake of L-carnitine by the carnitine/organic cation transporter novel 2 (OCTN2). Journal of Biological Chemistry, 2021, 296, 100204.	3.4	8
4	The Role of the Carnitine/Organic Cation Transporter Novel 2 in the Clinical Outcome of Patients With Locally Advanced Esophageal Carcinoma Treated With Oxaliplatin. Frontiers in Pharmacology, 2021, 12, 684545.	3.5	5
5	The Role of NF-kB in the Downregulation of Organic Cation Transporter 2 Expression and Renal Cation Secretion in Kidney Disease. Frontiers in Medicine, 2021, 8, 800421.	2.6	2
6	The role of cholesterol recognition (CARC/CRAC) mirror codes in the allosterism of the human organic cation transporter 2 (OCT2, SLC22A2). Biochemical Pharmacology, 2021, 194, 114840.	4.4	4
7	Farnesoid X receptor activation induces the degradation of hepatotoxic 1â€deoxysphingolipids in nonâ€alcoholic fatty liver disease. Liver International, 2020, 40, 844-859.	3.9	18
8	The Role of Mitochondria in Drug-Induced Kidney Injury. Frontiers in Physiology, 2020, 11, 1079.	2.8	23
9	Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. International Journal of Molecular Sciences, 2020, 21, 7890.	4.1	42
10	Untargeted Metabolomics Reveals Anaerobic Glycolysis as a Novel Target of the Hepatotoxic Antidepressant Nefazodone. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 239-246.	2.5	5
11	Plasma Membrane Cholesterol Regulates the Allosteric Binding of 1-Methyl-4-Phenylpyridinium to Organic Cation Transporter 2 (SLC22A2). Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 46-53.	2.5	14
12	Obeticholic Acid Ameliorates Valproic Acid–Induced Hepatic Steatosis and Oxidative Stress. Molecular Pharmacology, 2020, 97, 314-323.	2.3	23
13	The anti-tumor activity of pralatrexate (PDX) correlates with the expression of RFC and DHFR mRNA in preclinical models of multiple myeloma. Oncotarget, 2020, 11, 1576-1589.	1.8	8
14	microRNAâ€206 modulates the hepatic expression of the organic anionâ€transporting polypeptide 1B1. Liver International, 2019, 39, 2350-2359.	3.9	9
15	Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots. Nutrients, 2019, 11, 2353.	4.1	16
16	Lipid Accumulation and Chronic Kidney Disease. Nutrients, 2019, 11, 722.	4.1	207
17	Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules, 2019, 24, 653.	3.8	84
18	Renal Glycosuria as a Novel Early Sign of Colistin-Induced Kidney Damage in Mice. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	5

#	Article	IF	CITATIONS
19	Drug-induced bile duct injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1498-1506.	3.8	59
20	Fluorocholine Transport Mediated by the Organic Cation Transporter 2 (OCT2, SLC22A2): Implication for Imaging of Kidney Tumors. Drug Metabolism and Disposition, 2018, 46, 1129-1136.	3.3	17
21	Serotonin uptake is required for Rac1 activation in Krasâ€induced acinarâ€toâ€ductal metaplasia in the pancreas. Journal of Pathology, 2018, 246, 352-365.	4.5	13
22	Effects of Farnesoid X Receptor Activation on Arachidonic Acid Metabolism, NF-kB Signaling, and Hepatic Inflammation. Molecular Pharmacology, 2018, 94, 802-811.	2.3	69
23	Impact of Organic Cation Transporters (OCT-SLC22A) on Differential Diagnosis of Intrahepatic Lesions. Drug Metabolism and Disposition, 2017, 45, 166-173.	3.3	16
24	Colistin is Substrate of the Carnitine/Organic Cation Transporter 2 (OCTN2, SLC22A5). Drug Metabolism and Disposition, 2017, 45, 1240-1244.	3.3	25
25	Organic Cation Transporter 2 Overexpression May Confer an Increased Risk of Gentamicin-Induced Nephrotoxicity. Antimicrobial Agents and Chemotherapy, 2016, 60, 5573-5580.	3.2	40
26	Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1). American Journal of Physiology - Cell Physiology, 2015, 308, C631-C641.	4.6	17
27	Determinants of the activities of antifolates delivered into cells by folate-receptor-mediated endocytosis. Cancer Chemotherapy and Pharmacology, 2015, 75, 1163-1173.	2.3	7
28	Octreotide Inhibits the Bilirubin Carriers Organic Anion Transporting Polypeptides 1B1 and 1B3 and the Multidrug Resistance-Associated Protein 2. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 145-151.	2.5	22
29	The Intestinal Absorption of Folates. Annual Review of Physiology, 2014, 76, 251-274.	13.1	150
30	The impact of 5-formyltetrahydrofolate on the anti-tumor activity of pralatrexate, as compared to methotrexate, in HeLa cells in vitro. Cancer Chemotherapy and Pharmacology, 2014, 73, 1055-1062.	2.3	6
31	The membrane transport and polyglutamation of pralatrexate: a new-generation dihydrofolate reductase inhibitor. Cancer Chemotherapy and Pharmacology, 2013, 72, 597-606.	2.3	17
32	Pre-Clinical Analysis Of The Novel Antifolate Pralatrexate In Multiple Myeloma Reveals Functional Biomarkers Correlated With Response. Blood, 2013, 122, 4430-4430.	1.4	0
33	Substrate- and pH-Specific Antifolate Transport Mediated by Organic Anion-Transporting Polypeptide 2B1 (OATP2B1-SLCO2B1). Molecular Pharmacology, 2012, 81, 134-142.	2.3	34
34	The Antifolates. Hematology/Oncology Clinics of North America, 2012, 26, 629-648.	2.2	196
35	Mechanisms of Membrane Transport of Folates into Cells and Across Epithelia. Annual Review of Nutrition, 2011, 31, 177-201.	10.1	274
36	Drug interactions among the epidermal growth factor receptor inhibitors, other biologics and cytotoxic agents., 2010, 128, 82-90.		10