
Maciej Dobrzyński

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2494623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mining of Single-Cell Signaling Time-Series for Dynamic Phenotypes with Clustering. Methods in Molecular Biology, 2022, 2488, 183-206.	0.9	0
2	High-Content Screening Pipeline for Natural Products Targeting Oncogenic Signaling in Melanoma. Journal of Natural Products, 2022, , .	3.0	10
3	Combining Activity Profiling with Advanced Annotation to Accelerate the Discovery of Natural Products Targeting Oncogenic Signaling in Melanoma. Journal of Natural Products, 2022, 85, 1540-1554.	3.0	11
4	Optogenetic actuator – ERK biosensor circuits identify MAPK network nodes that shape ERKÂdynamics. Molecular Systems Biology, 2022, 18, .	7.2	27
5	CODEX, a neural network approach to explore signaling dynamics landscapes. Molecular Systems Biology, 2021, 17, e10026.	7.2	15
6	Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival. Developmental Cell, 2021, 56, 1712-1726.e6.	7.0	91
7	Mining single-cell time-series datasets with Time Course Inspector. Bioinformatics, 2020, 36, 1968-1969.	4.1	14
8	Temporal perturbation of ERK dynamics reveals network architecture of FGF2/MAPK signaling. Molecular Systems Biology, 2019, 15, e8947.	7.2	33
9	Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust. Analytical Chemistry, 2017, 89, 12682-12689.	6.5	9
10	Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention. Oncotarget, 2017, 8, 69435-69455.	1.8	27
11	Strategies for structuring interdisciplinary education in Systems Biology: an European perspective. Npj Systems Biology and Applications, 2016, 2, 16011.	3.0	21
12	Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF. Cellular Signalling, 2016, 28, 1451-1462.	3.6	6
13	Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches. Cell Systems, 2016, 2, 38-48.	6.2	159
14	Frequency modulation of <scp>ERK</scp> activation dynamics rewires cell fate. Molecular Systems Biology, 2015, 11, 838.	7.2	189
15	Polyubiquitin chain assembly and organization determine the dynamics of protein activation and degradation. Frontiers in Physiology, 2014, 5, 4.	2.8	28
16	Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses. Journal of the Royal Society Interface, 2014, 11, 20140383.	3.4	24
17	Mammalian protein expression noise: scaling principles and the implications for knockdown experiments. Molecular BioSystems, 2012, 8, 3068.	2.9	15
18	Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise. BMC Systems Biology, 2012, 6, 109.	3.0	89

Maciej Dobrzyński

#	Article	IF	CITATIONS
19	Origins of Stochastic Intracellular Processes and Consequences for Cell-to-Cell Variability and Cellular Survival Strategies. Methods in Enzymology, 2011, 500, 597-625.	1.0	18
20	Evolution of Bet-Hedging Mechanisms in Cell Cycle and Embryo Development Stimulated by Weak Linkage of Stochastic Processes. Results and Problems in Cell Differentiation, 2011, 53, 11-30.	0.7	4
21	Elongation dynamics shape bursty transcription and translation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2583-2588.	7.1	119
22	Computational methods for diffusion-influenced biochemical reactions. Bioinformatics, 2007, 23, 1969-1977.	4.1	52
23	Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli. Bioinformatics, 2006, 22, 1895-1901.	4.1	93