Martin Gengenbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2494535/publications.pdf

Version: 2024-02-01

58 3,406 papers citations

29 h-index 55 g-index

61 all docs 61 docs citations

61 times ranked

4473 citing authors

#	Article	IF	CITATIONS
1	<i>Mycobacterium tuberculosis</i> : success through dormancy. FEMS Microbiology Reviews, 2012, 36, 514-532.	8.6	571
2	Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology (United Kingdom), 2010, 156, 81-87.	1.8	251
3	Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. Cell Host and Microbe, 2015, 18, 96-108.	11.0	229
4	The Mtb Proteome Library: A Resource of Assays to Quantify the Complete Proteome of Mycobacterium tuberculosis. Cell Host and Microbe, 2013, 13, 602-612.	11.0	165
5	Reduced Drug Uptake in Phenotypically Resistant Nutrient-Starved Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 1648-1653.	3.2	133
6	Rifabutin Is Active against Mycobacterium abscessus Complex. Antimicrobial Agents and Chemotherapy, $2017, 61, \ldots$	3.2	119
7	Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin ΔureC::hly Vaccine's Superior Protection Against Tuberculosis. Journal of Infectious Diseases, 2014, 210, 1928-1937.	4.0	112
8	Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. MSystems, 2017, 2, .	3.8	112
9	Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics, 2015, 16, 34.	2.8	90
10	Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infectious Diseases, 2016, 2, 616-626.	3.8	83
11	Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Molecular Microbiology, 2010, 78, 980-988.	2.5	78
12	Vitamin B6 Biosynthesis by the Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2006, 281, 3633-3641.	3.4	77
13	The Recombinant BCG Î" <i>ureC::hly</i> Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation. Journal of Infectious Diseases, 2015, 211, 1831-1841.	4.0	74
14	Recombinant live vaccine candidates against tuberculosis. Current Opinion in Biotechnology, 2012, 23, 900-907.	6.6	68
15	Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nature Communications, 2020, 11, 1661.	12.8	66
16	Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in <i>Mycobacterium tuberculosis</i> . MBio, 2019, 10, .	4.1	63
17	Antigen 85C Inhibition Restricts Mycobacterium tuberculosis Growth through Disruption of Cord Factor Biosynthesis. Antimicrobial Agents and Chemotherapy, 2012, 56, 1735-1743.	3.2	62
18	The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Review of Vaccines, 2014, 13, 619-630.	4.4	62

#	Article	IF	CITATIONS
19	Deletion of <i>nuoG</i> from the Vaccine Candidate Mycobacterium bovis BCG \hat{l} " <i>ureC</i> :: <i>hly</i> Improves Protection against Tuberculosis. MBio, 2016, 7, .	4.1	62
20	Rifabutin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	59
21	Improved Efficacy of Fosmidomycin against Plasmodium and Mycobacterium Species by Combination with the Cell-Penetrating Peptide Octaarginine. Antimicrobial Agents and Chemotherapy, 2013, 57, 4689-4698.	3.2	52
22	Mild Nutrient Starvation Triggers the Development of a Small-Cell Survival Morphotype in Mycobacteria. Frontiers in Microbiology, 2016, 7, 947.	3.5	49
23	Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	49
24	Indole Propionic Acid, an Unusual Antibiotic Produced by the Gut Microbiota, With Anti-inflammatory and Antioxidant Properties. Frontiers in Microbiology, 2020, 11, 575586.	3.5	49
25	The Mycobacterial Membrane: A Novel Target Space for Anti-tubercular Drugs. Frontiers in Microbiology, 2018, 9, 1627.	3.5	40
26	TBAJ-876, a 3,5-Dialkoxypyridine Analogue of Bedaquiline, Is Active against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	34
27	BCG — old workhorse, new skills. Current Opinion in Immunology, 2017, 47, 8-16.	5.5	33
28	Draft Genome Sequence of Mycobacterium abscessus Bamboo. Genome Announcements, 2017, 5, .	0.8	32
29	Developmental transcriptome of resting cell formation in Mycobacterium smegmatis. BMC Genomics, 2016, 17, 837.	2.8	30
30	Nonclinical Development of BCG Replacement Vaccine Candidates. Vaccines, 2013, 1, 120-138.	4.4	29
31	Impact of immunopathology on the antituberculous activity of pyrazinamide. Journal of Experimental Medicine, 2018, 215, 1975-1986.	8.5	29
32	Novel Acetamide Indirectly Targets Mycobacterial Transporter MmpL3 by Proton Motive Force Disruption. Frontiers in Microbiology, 2018, 9, 2960.	3.5	28
33	Indolyl Azaspiroketal Mannich Bases Are Potent Antimycobacterial Agents with Selective Membrane Permeabilizing Effects and in Vivo Activity. Journal of Medicinal Chemistry, 2018, 61, 5733-5750.	6.4	28
34	Assembly of the Eukaryotic PLP-Synthase Complex from Plasmodium and Activation of the Pdx1 Enzyme. Structure, 2012, 20, 172-184.	3.3	26
35	The Tuberculosis Vaccine Candidate Bacillus Calmette-Guérin ΔureC::hly Coexpressing Human Interleukin-7 or -18 Enhances Antigen-Specific T Cell Responses in Mice. PLoS ONE, 2013, 8, e78966.	2.5	24
36	Humanized Mouse Model Mimicking Pathology of Human Tuberculosis for in vivo Evaluation of Drug Regimens. Frontiers in Immunology, 2019, 10, 89.	4.8	23

#	Article	IF	CITATIONS
37	A Leucyl-tRNA Synthetase Inhibitor with Broad-Spectrum Antimycobacterial Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	23
38	NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans. Scientific Reports, 2017, 7, 8853.	3.3	22
39	CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2203.	12.8	22
40	Dietary Pyridoxine Controls Efficacy of Vitamin B ₆ -Auxotrophic Tuberculosis Vaccine Bacillus Calmette-GuÃ@rin Î" <i>ureC</i> :: <i>hly</i> Î" <i>pdx1</i> in Mice. MBio, 2014, 5, e01262-14.	4.1	20
41	Tissue Distribution of Doxycycline in Animal Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
42	Post-exposure vaccination with the vaccine candidate Bacillus Calmette–Guérin ΔureC::hly induces superior protection in a mouse model of subclinical tuberculosis. Microbes and Infection, 2016, 18, 364-368.	1.9	19
43	The proteobacterial species <i>Burkholderia pseudomallei</i> produces ergothioneine, which enhances virulence in mammalian infection. FASEB Journal, 2018, 32, 6395-6409.	0.5	19
44	Biochemical and structural characterization of the putative dihydropteroate synthase ortholog Rv1207 of <i>Mycobacterium tuberculosis </i> . FEMS Microbiology Letters, 2008, 287, 128-135.	1.8	18
45	Epetraborole Is Active against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0115621.	3.2	17
46	<i>Mycobacterium tuberculosis</i> in the Proteomics Era. Microbiology Spectrum, 2014, 2, .	3.0	16
47	Piperidine-4-Carboxamides Target DNA Gyrase in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0067621.	3.2	14
48	A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for Nontuberculous Mycobacterial Lung Disease: Macrolide Case Study. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0221221.	3.2	13
49	Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrobial Agents and Chemotherapy, 2021, 65, e0002421.	3.2	12
50	Lesion Penetration and Activity Limit the Utility of Second-Line Injectable Agents in Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050621.	3.2	12
51	<i>In Vitro</i> Resistance against DNA Gyrase Inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus. Microbiology Spectrum, 2022, 10, e0132121.	3.0	11
52	A Mycobacterium tuberculosis NBTI DNA Gyrase Inhibitor Is Active against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0151421.	3.2	10
53	Antibacterial Drug Discovery: Doing It Right. Chemistry and Biology, 2015, 22, 5-6.	6.0	9
54	Potency boost of a <i>Mycobacterium tuberculosis</i> dihydrofolate reductase inhibitor by multienzyme F ₄₂₀ H ₂ -dependent reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9

#	Article	IF	CITATIONS
55	Cyclohexyl-griselimycin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0140021.	3.2	8
56	Defining the structural requirements for ribose 5â€phosphateâ€binding and intersubunit crossâ€talk of the malarial pyridoxal 5â€phosphate synthase. FEBS Letters, 2010, 584, 4169-4174.	2.8	7
57	Draft Genome Sequence of Mycobacterium avium 11. Genome Announcements, 2017, 5, .	0.8	7
58	Mycobacterium tuberculosis in the Proteomics Era. , 0, , 239-260.		0