Rene Beattie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2493221/publications.pdf

Version: 2024-02-01

361413 377865 1,393 37 20 34 citations h-index g-index papers 37 37 37 1551 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Applied Spectroscopy, 2021, 75, 361-375.	2.2	108
2	Quantification of calcium in infant formula using laser-induced breakdown spectroscopy (LIBS), Fourier transform mid-infrared (FT-IR) and Raman spectroscopy combined with chemometrics including data fusion. Food Chemistry, 2020, 320, 126639.	8.2	38
3	Raman spectroscopy as a predictive tool for monitoring osteoporosis therapy in a rat model of postmenopausal osteoporosis. Journal of Materials Science: Materials in Medicine, 2019, 30, 25.	3.6	6
4	A Preliminary Evaluation of the Ability of Keratotic Tissue to Act as a Prognostic Indicator of Hip Fracture Risk. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 2018, 11, 117954411775405.	1.2	3
5	Raman spectroscopy predicts the link between claw keratin and bone collagen structure in a rodent model of oestrogen deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 398-406.	3.8	26
6	Raman spectral variation for human fingernails of postmenopausal women is dependent on fracture risk and osteoporosis status. Journal of Raman Spectroscopy, 2017, 48, 813-821.	2.5	11
7	Prediction of naturally-occurring, industrially-induced and total trans fatty acids in butter, dairy spreads and Cheddar cheese using vibrational spectroscopy and multivariate data analysis. International Dairy Journal, 2015, 51, 41-51.	3.0	18
8	Multivariate Analysis for the Processing of Signals. Oil and Gas Science and Technology, 2014, 69, 207-228.	1.4	5
9	Raman Spectroscopy for the Detection of AGEs/ALEs. Methods in Molecular Biology, 2013, 965, 297-312.	0.9	8
10	Estimation of signal backgrounds on multivariate loadings improves model generation in face of complex variation in backgrounds and constituents. Journal of Raman Spectroscopy, 2013, 44, 329-338.	2.5	18
11	Profiling Retinal Biochemistry in the MPDZ Mutant Retinal Dysplasia and Degeneration Chick: A Model of Human RP and LCA., 2012, 53, 413.		9
12	Raman Microscopy: A Versatile Approach to Bio-Imaging. Springer Series in Optical Sciences, 2012, , 219-242.	0.7	1
13	Sclera as a Surrogate Marker for Determining AGE-Modifications in Bruch's Membrane Using a Raman Spectroscopy–Based Index of Aging. , 2011, 52, 1593.		26
14	Optimising reproducibility in low quality signals without smoothing; an alternative paradigm for signal processing. Journal of Raman Spectroscopy, 2011, 42, 1419-1427.	2.5	20
15	Multiplex analysis of ageâ€related protein and lipid modifications in human Bruch's membrane. FASEB Journal, 2010, 24, 4816-4824.	0.5	1
16	Multiplex analysis of age-related protein and lipid modifications in human Bruch's membrane. FASEB Journal, 2010, 24, 4816-4824.	0.5	54
17	Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer. Journal of Biomedical Optics, 2010, 15, 026015.	2.6	40
18	Effect of signal intensity normalization on the multivariate analysis of spectral data in complex â€~realâ€world' datasets. Journal of Raman Spectroscopy, 2009, 40, 429-435.	2.5	36

#	Article	IF	Citations
19	Identifying the Spatial Distribution of Vitamin E, Pulmonary Surfactant and Membrane Lipids in Cells and Tissue by Confocal Raman Microscopy. Methods in Molecular Biology, 2009, 579, 513-535.	0.9	8
20	Raman spectroscopy of advanced glycation end products (AGEs), possible markers for progressive retinal dysfunction. Journal of Raman Spectroscopy, 2008, 39, 1635-1642.	2.5	25
21	<i>Advanced Glycation as a Basis for Understanding Retinal Aging and Noninvasive Risk Prediction</i> Annals of the New York Academy of Sciences, 2008, 1126, 59-65.	3.8	24
22	Preliminary investigations on the effects of ageing and cooking on the Raman spectra of porcine longissimus dorsi. Meat Science, 2008, 80, 1205-1211.	5.5	41
23	Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch's membrane leading to accurate, nondestructive prediction of ocular aging. FASEB Journal, 2007, 21, 3542-3552.	0.5	107
24	The use of Raman microscopy to determine and localize vitamin E in biological samples. FASEB Journal, 2007, 21, 766-776.	0.5	48
25	Investigation into the subambient behavior of aqueous mannitol solutions using temperature-controlled Raman microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 569-578.	4.3	19
26	Classification of Adipose Tissue Species using Raman Spectroscopy. Lipids, 2007, 42, 679-685.	1.7	52
27	Raman microscopy of porcine inner retinal layers from the area centralis. Molecular Vision, 2007, 13, 1106-13.	1.1	13
28	Raman Microscopy for the Chemometric Analysis of Tumor Cells. Journal of Physical Chemistry B, 2006, 110, 19625-19631.	2.6	100
29	Prediction of adipose tissue composition using raman spectroscopy: Average properties and individual fatty acids. Lipids, 2006, 41, 287-294.	1.7	92
30	Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis. Molecular Vision, 2005, 11, 825-32.	1.1	13
31	A critical evaluation of Raman spectroscopy for the analysis of lipids: Fatty acid methyl esters. Lipids, 2004, 39, 407-419.	1.7	114
32	Multivariate prediction of clarified butter composition using raman spectroscopy. Lipids, 2004, 39, 897-906.	1.7	54
33	Development of sampling methods for Raman analysis of solid dosage forms of therapeutic and illicit drugs. Journal of Raman Spectroscopy, 2004, 35, 409-417.	2.5	81
34	Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Science, 2004, 66, 903-913.	5. 5	117
35	DFT studies of long-chain FAMEs: theoretical justification for determining chain length and unsaturation from experimental Raman spectra. Computational and Theoretical Chemistry, 2003, 626, 27-45.	1.5	22
36	Conformations, vibrational frequencies and Raman intensities of short-chain fatty acid methyl esters using DFT with 6-31G(d) and Sadlej pVTZ basis sets. Computational and Theoretical Chemistry, 2002, 586, 91-110.	1.5	33

#	Article	IF	CITATIONS
37	Reflections of the realâ€world in the unreal, using simulation to design complex realâ€world validation studies for spectroscopy. Journal of Raman Spectroscopy, 0, , .	2.5	2