
Anthony A Sauve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2493029/publications.pdf Version: 2024-02-01

ANTHONY & SALINE

#	Article	IF	CITATIONS
1	The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metabolism, 2012, 15, 838-847.	16.2	957
2	Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival. Cell, 2007, 130, 1095-1107.	28.9	855
3	Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt. Developmental Cell, 2008, 14, 661-673.	7.0	701
4	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	16.2	673
5	The Biochemistry of Sirtuins. Annual Review of Biochemistry, 2006, 75, 435-465.	11.1	656
6	Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction*. Journal of Biological Chemistry, 2006, 281, 21745-21754.	3.4	567
7	Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature, 2014, 508, 258-262.	27.8	387
8	NAD + metabolism: Bioenergetics, signaling and manipulation for therapy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1787-1800.	2.3	327
9	SIRT1 Deacetylation and Repression of p300 Involves Lysine Residues 1020/1024 within the Cell Cycle Regulatory Domain 1. Journal of Biological Chemistry, 2005, 280, 10264-10276.	3.4	301
10	Chemistry of Gene Silencing:  The Mechanism of NAD+-Dependent Deacetylation Reactions. Biochemistry, 2001, 40, 15456-15463.	2.5	293
11	NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease. Cell Metabolism, 2014, 19, 1042-1049.	16.2	293
12	Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology, 2016, 63, 1190-1204.	7.3	289
13	Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiology of Aging, 2013, 34, 1581-1588.	3.1	287
14	NAD ⁺ and Vitamin B ₃ : From Metabolism to Therapies. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 883-893.	2.5	273
15	Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metabolism, 2018, 27, 667-676.e4.	16.2	242
16	Activation of SIRT3 by the NAD+ Precursor Nicotinamide Riboside Protects from Noise-Induced Hearing Loss. Cell Metabolism, 2014, 20, 1059-1068.	16.2	237
17	PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure. Cell Metabolism, 2011, 13, 450-460.	16.2	231
18	Hormonal Control of Androgen Receptor Function through SIRT1. Molecular and Cellular Biology, 2006. 26. 8122-8135.	2.3	214

ANTHONY A SAUVE

#	Article	IF	CITATIONS
19	Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Reports, 2015, 13, 533-545.	6.4	213
20	Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metabolism, 2014, 19, 1034-1041.	16.2	211
21	NAD ⁺ repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 2016, 8, 361ra139.	12.4	208
22	Sir2 Regulation by Nicotinamide Results from Switching between Base Exchange and Deacetylation Chemistry. Biochemistry, 2003, 42, 9249-9256.	2.5	205
23	Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Molecular Aspects of Medicine, 2013, 34, 1168-1201.	6.4	202
24	Enzymes in the NAD+ Salvage Pathway Regulate SIRT1 Activity at Target Gene Promoters. Journal of Biological Chemistry, 2009, 284, 20408-20417.	3.4	200
25	<scp>SIRT</scp> 2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO Journal, 2014, 33, 1438-1453.	7.8	195
26	SIRT1 and endocrine signaling. Trends in Endocrinology and Metabolism, 2006, 17, 186-191.	7.1	175
27	NAD metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity. AAPS Journal, 2006, 8, E632-43.	4.4	145
28	Chemical Activation of Sir2-Dependent Silencing by Relief of Nicotinamide Inhibition. Molecular Cell, 2005, 17, 595-601.	9.7	141
29	Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. Journal of Clinical Investigation, 2015, 125, 4592-4600.	8.2	135
30	SIRT4 Represses Peroxisome Proliferator-Activated Receptor α Activity To Suppress Hepatic Fat Oxidation. Molecular and Cellular Biology, 2013, 33, 4552-4561.	2.3	132
31	Sirtuin chemical mechanisms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1591-1603.	2.3	131
32	Nicotinamide Riboside Kinase Structures Reveal New Pathways to NAD+. PLoS Biology, 2007, 5, e263.	5.6	126
33	The Reaction Mechanism for CD38. A Single Intermediate Is Responsible for Cyclization, Hydrolysis, and Base-Exchange Chemistriesâ€. Biochemistry, 1998, 37, 13239-13249.	2.5	109
34	Global Analysis of Transcriptional Regulation by Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase in MCF-7 Human Breast Cancer Cells. Journal of Biological Chemistry, 2009, 284, 33926-33938.	3.4	102
35	Syntheses of Nicotinamide Riboside and Derivatives: Effective Agents for Increasing Nicotinamide Adenine Dinucleotide Concentrations in Mammalian Cells. Journal of Medicinal Chemistry, 2007, 50, 6458-6461.	6.4	99
36	Identification of the Aryl Hydrocarbon Receptor Target Gene TiPARP as a Mediator of Suppression of Hepatic Gluconeogenesis by 2,3,7,8-Tetrachlorodibenzo-p-dioxin and of Nicotinamide as a Corrective Agent for This Effect. Journal of Biological Chemistry, 2010, 285, 38801-38810.	3.4	95

ANTHONY A SAUVE

#	Article	IF	CITATIONS
37	Dihydronicotinamide riboside is a potent NAD+ concentration enhancer in vitro and in vivo. Journal of Biological Chemistry, 2019, 294, 9295-9307.	3.4	79
38	Sirtuins: NAD+-dependent deacetylase mechanism and regulation. Current Opinion in Chemical Biology, 2012, 16, 535-543.	6.1	77
39	SIR2: The Biochemical Mechanism of NAD+-Dependent Protein Deacetylation and ADP-Ribosyl Enzyme Intermediates. Current Medicinal Chemistry, 2004, 11, 807-826.	2.4	76
40	A Covalent Intermediate in CD38 Is Responsible for ADP-Ribosylation and Cyclization Reactions. Journal of the American Chemical Society, 2000, 122, 7855-7859.	13.7	62
41	NRH salvage and conversion to NAD+ requires NRH kinase activity by adenosine kinase. Nature Metabolism, 2020, 2, 364-379.	11.9	55
42	Mangiferin Stimulates Carbohydrate Oxidation and Protects Against Metabolic Disorders Induced by High-Fat Diets. Diabetes, 2014, 63, 3626-3636.	0.6	54
43	Characterization of Nicotinamidases: Steady State Kinetic Parameters, Classwide Inhibition by Nicotinaldehydes, and Catalytic Mechanism. Biochemistry, 2010, 49, 10421-10439.	2.5	51
44	Dual Mode Action of Mangiferin in Mouse Liver under High Fat Diet. PLoS ONE, 2014, 9, e90137.	2.5	48
45	Plasmodium falciparum Sir2 is an NAD+-Dependent Deacetylase and an Acetyllysine-Dependent and Acetyllysine-Independent NAD+ Glycohydrolase. Biochemistry, 2008, 47, 10227-10239.	2.5	46
46	Ionic States of Substrates and Transition State Analogues at the Catalytic Sites ofN-Ribosyltransferasesâ€. Biochemistry, 2003, 42, 5694-5705.	2.5	41
47	Pharmaceutical Strategies for Activating Sirtuins. Current Pharmaceutical Design, 2009, 15, 45-56.	1.9	38
48	Vitamin B3, the nicotinamide adenine dinucleotides and aging. Mechanisms of Ageing and Development, 2010, 131, 287-298.	4.6	38
49	NAD+ Content and Its Role in Mitochondria. Methods in Molecular Biology, 2015, 1241, 39-48.	0.9	38
50	Regulatory Effects of NAD + Metabolic Pathways on Sirtuin Activity. Progress in Molecular Biology and Translational Science, 2018, 154, 71-104.	1.7	36
51	Transition State of ADP-Ribosylation of Acetyllysine Catalyzed by Archaeoglobus fulgidus Sir2 Determined by Kinetic Isotope Effects and Computational Approaches. Journal of the American Chemical Society, 2010, 132, 12286-12298.	13.7	34
52	Acetylation-defective mutants of PparÎ ³ are associated with decreased lipid synthesis in breast cancer cells. Oncotarget, 2014, 5, 7303-7315.	1.8	34
53	Mechanism-Based Inhibitors of CD38: A Mammalian Cyclic ADP-Ribose Synthetaseâ€. Biochemistry, 2002, 41, 8455-8463.	2.5	31
54	High-Resolution Crystal Structures of <i>Streptococcus pneumoniae</i> Nicotinamidase with Trapped Intermediates Provide Insights into the Catalytic Mechanism and Inhibition by Aldehydes,. Biochemistry, 2010, 49, 8803-8812.	2.5	30

ANTHONY A SAUVE

#	Article	IF	CITATIONS
55	Diastereocontrolled Electrophilic Fluorinations of 2-Deoxyribonolactone: Syntheses of All Corresponding 2-Deoxy-2-fluorolactones and 2′-Deoxy-2′-fluoro-NAD ⁺ s. Journal of Organic Chemistry, 2009, 74, 5779-5789.	3.2	29
56	Sirtuin Deacetylases as Therapeutic Targets in the Nervous System. Neurotherapeutics, 2013, 10, 605-620.	4.4	28
57	Mechanism-based affinity capture of sirtuins. Organic and Biomolecular Chemistry, 2011, 9, 987-993.	2.8	27
58	Sirtuins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1565-1566.	2.3	11
59	Synthesis of βâ€Nicotinamide Riboside Using an Efficient Twoâ€6tep Methodology. Current Protocols in Nucleic Acid Chemistry, 2017, 71, 14.14.1-14.14.9.	0.5	10
60	Assays for Determination of Cellular and Mitochondrial NAD+ and NADH Content. Methods in Molecular Biology, 2021, 2310, 271-285.	0.9	4
61	Multifunctionalization of cetuximab with bioorthogonal chemistries and parallel EGFR profiling of cell-lines using imaging, FACS and immunoprecipitation approaches. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2182-2192.	2.3	3
62	A SIR-tain Acetyl Complex Is Caught by a Sulfur Trap. Structure, 2008, 16, 1289-1292.	3.3	1
63	Biochemistry and Enzymology of Sirtuins. , 2016, , 1-27.		1
64	Metabolic Disease, NAD Metabolism, Nicotinamide Riboside, and the Gut Microbiome: Connecting the Dots from the Gut to Physiology. MSystems, 2022, , e0122321.	3.8	1
65	Dihydronicotinamide riboside is a potent NAD ⁺ concentration enhancer <i>in vitro</i> and <i>in vivo</i> . FASEB Journal, 2021, 35, .	0.5	0
66	Does Declining Mitochondrial NAD+ and Unscheduled Opening of Mitochondrial Transition Pore Promote Mammalian Aging?. Blood, 2010, 116, SCI-3-SCI-3.	1.4	0
67	Screening of SirT1 activating compounds and their cytotoxicity in prostate cancer cell lines Journal of Clinical Oncology, 2012, 30, e13545-e13545.	1.6	0
68	Nicotinamidases and Sirtuins. , 2020, , 131-156.		0