
Michel Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492632/publications.pdf Version: 2024-02-01

MICHEL CUREDT

#	Article	IF	CITATIONS
1	The Genetic Bases for the Variation in the Lipo-oligosaccharide of the Mucosal Pathogen, Campylobacter jejuni. Journal of Biological Chemistry, 2002, 277, 327-337.	3.4	254
2	Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384. Journal of Biological Chemistry, 2000, 275, 3896-3906.	3.4	244
3	Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Molecular Microbiology, 2002, 37, 501-514.	2.5	206
4	Structural analysis of the sialyltransferase Cstll from Campylobacter jejuni in complex with a substrate analog. Nature Structural and Molecular Biology, 2004, 11, 163-170.	8.2	196
5	A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology, 2002, 12, 235-240.	2.5	187
6	Detection of Conserved N-Linked Glycans and Phase-variable Lipooligosaccharides and Capsules from Campylobacter Cells by Mass Spectrometry and High Resolution Magic Angle Spinning NMR Spectroscopy. Journal of Biological Chemistry, 2003, 278, 24509-24520.	3.4	180
7	The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome. Journal of Clinical Investigation, 2004, 114, 1659-1665.	8.2	172
8	Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Molecular Microbiology, 2004, 55, 90-103.	2.5	162
9	Cloning of the Lipooligosaccharide α-2,3-Sialyltransferase from the Bacterial Pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Journal of Biological Chemistry, 1996, 271, 28271-28276.	3.4	159
10	Structural Characterization of Campylobacter jejuni Lipooligosaccharide Outer Cores Associated with Guillain-Barrel•and Miller Fisher Syndromes. Infection and Immunity, 2007, 75, 1245-1254.	2.2	130
11	The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/sialyltransferase fusion. Nature Biotechnology, 1998, 16, 769-772.	17.5	123
12	Identification of a lipopolysaccharide alpha-2,3-sialyltransferase from Haemophilus influenzae. Molecular Microbiology, 2001, 39, 341-351.	2.5	121
13	Comparison of Campylobacter jejuni Lipooligosaccharide Biosynthesis Loci from a Variety of Sources. Journal of Clinical Microbiology, 2005, 43, 2771-2781.	3.9	119
14	Comprehensive Analysis of Bacterial Risk Factors for the Development of Guillainâ€Barré Syndrome afterCampylobacter jejuniEnteritis. Journal of Infectious Diseases, 2006, 193, 547-555.	4.0	117
15	The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome. Journal of Clinical Investigation, 2004, 114, 1659-1665.	8.2	111
16	The Sialylated Lipooligosaccharide Outer Core in <i>Campylobacter jejuni</i> Is an Important Determinant for Epithelial Cell Invasion. Infection and Immunity, 2008, 76, 4431-4438.	2.2	103
17	Strong Inhibition of Cholera Toxin by Multivalent GM1 Derivatives. ChemBioChem, 2007, 8, 1500-1503.	2.6	101
18	Production and Secretion of Proteins by Streptomycetes. Critical Reviews in Biotechnology, 1995, 15, 13-39.	9.0	97

#	Article	IF	CITATIONS
19	Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydrate Research, 2005, 340, 1963-1972.	2.3	95
20	Effects of Sequential <i>Campylobacter jejuni</i> 81-176 Lipooligosaccharide Core Truncations on Biofilm Formation, Stress Survival, and Pathogenesis. Journal of Bacteriology, 2010, 192, 2182-2192.	2.2	94
21	Structural Analysis of the α-2,3-Sialyltransferase Cst-I from Campylobacter jejuni in Apo and Substrate-Analogue Bound Forms,. Biochemistry, 2007, 46, 7196-7204.	2.5	90
22	Recognition of Sialylated Polyâ€∢i>Nâ€acetyllactosamine Chains on <i>N</i> ―and <i>O</i> ‣inked Glycans by Human and Avian Influenzaâ€A Virus Hemagglutinins. Angewandte Chemie - International Edition, 2012, 51, 4860-4863.	13.8	88
23	Characterization of the Specific Interaction between Sialoadhesin and Sialylated <i>Campylobacter jejuni</i> Lipooligosaccharides. Infection and Immunity, 2010, 78, 3237-3246.	2.2	85
24	Characterization of Lipooligosaccharide-Biosynthetic Loci of <i>Campylobacter jejuni</i> Reveals New Lipooligosaccharide Classes: Evidence of Mosaic Organizations. Journal of Bacteriology, 2008, 190, 5681-5689.	2.2	82
25	A Campylobacter jejuni gene associated with immune-mediated neuropathy. Nature Medicine, 2001, 7, 752-753.	30.7	81
26	Structures of Merkel Cell Polyomavirus VP1 Complexes Define a Sialic Acid Binding Site Required for Infection. PLoS Pathogens, 2012, 8, e1002738.	4.7	79
27	Large-Scale In Vivo Synthesis of the Carbohydrate Moieties of Gangliosides GM1 and GM2 by Metabolically Engineered Escherichia coli. ChemBioChem, 2003, 4, 406-412.	2.6	75
28	Recognition of protein-linked glycans as a determinant of peptidase activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E679-E688.	7.1	70
29	Characterization of a Recombinant Neisseria Meningitidesalpha-2,3-Sialyltransferase and its Acceptor Specificity. FEBS Journal, 1997, 249, 187-194.	0.2	69
30	Structural and Mechanistic Analysis of Sialic Acid Synthase NeuB from Neisseria meningitidis in Complex with Mn2+, Phosphoenolpyruvate, and N-Acetylmannosaminitol. Journal of Biological Chemistry, 2005, 280, 3555-3563.	3.4	64
31	Structure of an alpha-2,6-sialylated lipooligosaccharide from Neisseria meningitidis immunotype L1. FEBS Journal, 1998, 254, 626-633.	0.2	62
32	A direct NMR method for the measurement of competitive kinetic isotope effects. Nature Chemical Biology, 2010, 6, 405-407.	8.0	60
33	The Influence of Ligand Valency on Aggregation Mechanisms for Inhibiting Bacterial Toxins. ChemBioChem, 2009, 10, 329-337.	2.6	59
34	Fluorescence Activated Cell Sorting as a General Ultra-High-Throughput Screening Method for Directed Evolution of Glycosyltransferases. Journal of the American Chemical Society, 2010, 132, 10570-10577.	13.7	58
35	Guillain-Barré Syndrome-Related Campylobacter jejuni in Bangladesh: Ganglioside Mimicry and Cross-Reactive Antibodies. PLoS ONE, 2012, 7, e43976.	2.5	58
36	Structure of a Sialic Acid-activating Synthetase, CMP-acylneuraminate Synthetase in the Presence and Absence of CDP. Journal of Biological Chemistry, 2001, 276, 8190-8196.	3.4	55

#	Article	IF	CITATIONS
37	Identification of a Bifunctional Lipopolysaccharide Sialyltransferase in Haemophilus influenzae. Journal of Biological Chemistry, 2006, 281, 40024-40032.	3.4	53
38	Bioengineering of Surface GD3 Ganglioside for Immunotargeting Human Melanoma Cells. Journal of Biological Chemistry, 2004, 279, 25390-25399.	3.4	51
39	Single-Domain Antibody-Nanoparticles: Promising Architectures for Increased <i>Staphylococcus aureus</i> Detection Specificity and Sensitivity. Bioconjugate Chemistry, 2009, 20, 1966-1974.	3.6	50
40	Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene. Organic and Biomolecular Chemistry, 2013, 11, 4340-4349.	2.8	50
41	Lipooligosaccharide of Campylobacter jejuni. Journal of Biological Chemistry, 2011, 286, 12361-12370.	3.4	49
42	Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology, 2012, 22, 1453-1464.	2.5	49
43	Molecular Basis for Recognition of the Cancer Glycobiomarker, LacdiNAc (GalNAc[î²1→4]ClcNAc), by Wisteria floribunda Agglutinin. Journal of Biological Chemistry, 2016, 291, 24085-24095.	3.4	49
44	A Haemophilus influenzae Strain Associated with Fisher Syndrome Expresses a Novel Disialylated Ganglioside Mimic. Biochemistry, 2007, 46, 8164-8171.	2.5	45
45	Dependence of the Bi-functional Nature of a Sialyltransferase from Neisseria meningitidis on a Single Amino Acid Substitution. Journal of Biological Chemistry, 2001, 276, 12785-12790.	3.4	44
46	High-level expression of recombinant Neisseria CMP-sialic acid synthetase in Escherichia coli. Protein Expression and Purification, 2002, 25, 237-240.	1.3	44
47	Identification of a Sialate O-Acetyltransferase from Campylobacter jejuni. Journal of Biological Chemistry, 2006, 281, 11480-11486.	3.4	44
48	Variants of the β1,3-Galactosyltransferase CgtB from the Bacterium Campylobacter Jejuni have Distinct Acceptor Specificities. Glycobiology, 2007, 17, 1333-1343.	2.5	42
49	Mass Spectrometric Analysis of Intact Lipooligosaccharide:  Direct Evidence for <i>O</i> -Acetylated Sialic Acids and Discovery of <i>O</i> -Linked Glycine Expressed by <i>Campylobacter jejuni</i> . Biochemistry, 2007, 46, 14704-14714.	2.5	42
50	Spectrum of neurological diseases associated with antibodies to minor gangliosides GM1b and GalNAc-GD1a. Journal of Neuroimmunology, 2006, 177, 201-208.	2.3	41
51	Characterization of the Â-2,8-polysialyltransferase from Neisseria meningitidis with synthetic acceptors, and the development of a self-priming polysialyltransferase fusion enzyme. Clycobiology, 2007, 18, 177-186.	2.5	41
52	Polymer-supported and chemoenzymatic synthesis of the Neisseria meningitidis pentasaccharide: a methodological comparison. Carbohydrate Research, 2000, 328, 3-16.	2.3	39
53	Origin of ganglioside complex antibodies in Guillain–Barré syndrome. Journal of Neuroimmunology, 2007, 188, 69-73.	2.3	39
54	GQ1b-seronegative Fisher syndrome: clinical features and new serological markers. Journal of Neurology, 2012, 259, 1366-1374.	3.6	38

#	Article	IF	CITATIONS
55	Evidence for Acquisition of the Lipooligosaccharide Biosynthesis Locus in Campylobacter jejuni GB11, a Strain Isolated from a Patient with Guillain-Barrel•Syndrome, by Horizontal Exchange. Infection and Immunity, 2004, 72, 1162-1165.	2.2	37
56	Comparative genomic analysis of Campylobacter jejuni associated with Guillain-Barré and Miller Fisher syndromes: neuropathogenic and enteritis-associated isolates can share high levels of genomic similarity. BMC Genomics, 2007, 8, 359.	2.8	36
57	Crystallographic and Glycan Microarray Analysis of Human Polyomavirus 9 VP1 Identifies <i>N</i> -Glycolyl Neuraminic Acid as a Receptor Candidate. Journal of Virology, 2014, 88, 6100-6111.	3.4	36
58	GM3, GM2 and GM1 mimics designed for biosensing: chemoenzymatic synthesis, target affinities and 900MHz NMR analysis. Carbohydrate Research, 2008, 343, 636-650.	2.3	35
59	Glycosphingolipid synthesis employing a combination of recombinant glycosyltransferases and an endoglycoceramidase glycosynthase. Chemical Communications, 2011, 47, 10806.	4.1	35
60	Structural Analysis of the Capsular Polysaccharide fromCampylobacter jejuni RM1221. ChemBioChem, 2007, 8, 625-631.	2.6	34
61	Simplifying Oligosaccharide Synthesis:  Efficient Synthesis of Lactosamine and Siaylated Lactosamine Oligosaccharide Donors. Journal of Organic Chemistry, 2003, 68, 2426-2431.	3.2	33
62	Structural and enzymatic characterization of NanS (YjhS), a 9â€ <i>O</i> â€Acetyl <i>N</i> â€acetylneuraminic acid esterase from <i>Escherichia coli O157:H7</i> . Protein Science, 2011, 20, 1208-1219.	7.6	33
63	Ready Access to Sialylated Oligosaccharide Donors. Organic Letters, 2000, 2, 751-753.	4.6	31
64	Recognition Characteristics of Monoclonal Antibodies That Are Cross-Reactive with Gangliosides and Lipooligosaccharide fromCampylobacter jejuniStrains Associated with Guillain-Barré and Fisher Syndromesâ€. Biochemistry, 2007, 46, 36-44.	2.5	31
65	Chemoenzymatic Iterative Synthesis of Difficult Linkages of Oligosaccharides on Soluble Polymeric Supports. Organic Letters, 2001, 3, 3265-3268.	4.6	27
66	Chemoenzymatic Syntheses of Tumorâ€Associated Carbohydrate Antigen Globoâ€H and Stage‧pecific Embryonic Antigen 4. Advanced Synthesis and Catalysis, 2008, 350, 1717-1728.	4.3	25
67	Complete chemoenzymatic synthesis of the Forssman antigen using novel glycosyltransferases identified in Campylobacter jejuni and Pasteurella multocida. Glycobiology, 2008, 19, 153-159.	2.5	24
68	Cell surface glycoproteins from Thermoplasma acidophilum are modified with an N-linked glycan containing 6-C-sulfofucoseâ€. Glycobiology, 2012, 22, 1256-1267.	2.5	24
69	Sialyltransferase inhibitors: consideration of molecular shape and charge/hydrophobic interactions. Carbohydrate Research, 2013, 378, 45-55.	2.3	24
70	Sialyltransferases with enhanced legionaminic acid transferase activity for the preparation of analogs of sialoglycoconjugates. Glycobiology, 2015, 25, 767-773.	2.5	24
71	A Novel Synthetic Receptor-Based Immunoassay for Influenza Vaccine Quantification. PLoS ONE, 2013, 8, e55428.	2.5	22
72	Co-infection with two different Campylobacter jejuni strains in a patient with the Guillain–Barré syndrome. Microbes and Infection, 2006, 8, 248-253.	1.9	21

#	Article	IF	CITATIONS
73	Structure of a Sugar <i>N</i> -Formyltransferase from <i>Campylobacter jejuni</i> . Biochemistry, 2013, 52, 6114-6126.	2.5	21
74	A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus. Applied Microbiology and Biotechnology, 1993, 40, 508-14.	3.6	20
75	Vaccination with Tumor-Ganglioside Glycomimetics Activates a Selective Immunity that Affords Cancer Therapy. Cell Chemical Biology, 2019, 26, 1013-1026.e4.	5.2	20
76	Title is missing!. Biotechnology Letters, 1997, 19, 417-420.	2.2	19
77	Campylobacter jejuni Lipooligosaccharides: Structures and Biosynthesis. , 2014, , 483-504.		19
78	Complex of GM1- and GD1a-Like Lipo-Oligosaccharide Mimics GM1b, Inducing Anti-GM1b Antibodies. PLoS ONE, 2015, 10, e0124004.	2.5	19
79	Structural and Kinetic Characterizations of the Polysialic Acid O-Acetyltransferase OatWY from Neisseria meningitidis. Journal of Biological Chemistry, 2009, 284, 24501-24511.	3.4	18
80	The role of WlaRG, WlaTB and WlaTC in lipooligosaccharide synthesis by Campylobacter jejuni strain 81116. Microbial Pathogenesis, 2012, 52, 344-352.	2.9	18
81	High-level heterologous expression and secretion inStreptomyces lividansof two major antigenic proteins fromMycobacterium tuberculosis. Canadian Journal of Microbiology, 2002, 48, 43-48.	1.7	17
82	Electrophoresis-assisted open-tubular liquid chromatography/mass spectrometry for the analysis of lipooligosaccharide expressed byCampylobacter jejuni. Electrophoresis, 2005, 26, 3360-3368.	2.4	17
83	PCR-Restriction Fragment Length Polymorphism Analysis of Campylobacter jejuni Genes Involved in Lipooligosaccharide Biosynthesis Identifies Putative Molecular Markers for Guillain-Barrel•Syndrome. Journal of Clinical Microbiology, 2007, 45, 2316-2320.	3.9	17
84	Can Campylobacter coli induce Guillain-Barré syndrome?. European Journal of Clinical Microbiology and Infectious Diseases, 2009, 28, 557-560.	2.9	17
85	Preparation of legionaminic acid analogs of sialo-glycoconjugates by means of mammalian sialyltransferases. Glycoconjugate Journal, 2015, 32, 729-734.	2.7	17
86	Association of Anti-GT1a Antibodies with an Outbreak of Guillain-Barré Syndrome and Analysis of Ganglioside Mimicry in an Associated Campylobacter jejuni Strain. PLoS ONE, 2015, 10, e0131730.	2.5	17
87	Rapid Method for Sensitive Screening of Oligosaccharide Epitopes in the Lipooligosaccharide from <i>Campylobacter jejuni</i> Strains Isolated from Guillain-Barrel•Syndrome and Miller Fisher Syndrome Patients. Journal of Clinical Microbiology, 2008, 46, 3429-3436.	3.9	16
88	STD-NMR Used To Elucidate the Fine Binding Specificity of Pathogenic Anti-Ganglioside Antibodies Directly in Patient Serum. Biochemistry, 2009, 48, 220-222.	2.5	16
89	A Single N-Acetylgalactosamine Residue at Threonine 106 Modifies the Dynamics and Structure of Interferon α2a around the Glycosylation Site. Journal of Biological Chemistry, 2013, 288, 247-254.	3.4	16
90	Synthesis of a disialylated hexasaccharide of Type VIII Group B Streptococcus capsular polysaccharide. Carbohydrate Research, 1999, 319, 1-16.	2.3	15

#	Article	IF	CITATIONS
91	Purification and characterization of a xylanase from the thermophilic ascomyceteThielavia terrestris 255b. Applied Biochemistry and Biotechnology, 1992, 34-35, 247-259.	2.9	14
92	Characterization of the enzymes present in the cellulase system of Thielavia terrestris 255B. Bioresource Technology, 1992, 39, 147-153.	9.6	13
93	Biochemical Characterization of a Polysialyltransferase from Mannheimia haemolytica A2 and Comparison to Other Bacterial Polysialyltransferases. PLoS ONE, 2013, 8, e69888.	2.5	12
94	Bacterial Sugar 3,4-Ketoisomerases: Structural Insight into Product Stereochemistry. Biochemistry, 2015, 54, 4495-4506.	2.5	12
95	Structural investigation on WlaRG from <i>Campylobacter jejuni</i> : A sugar aminotransferase. Protein Science, 2017, 26, 586-599.	7.6	12
96	Biosynthesis of Legionaminic Acid and Its Incorporation Into Glycoconjugates. Methods in Enzymology, 2017, 597, 187-207.	1.0	12
97	Small-Molecule Ligands of GD2 Ganglioside, Designed from NMR Studies, Exhibit Induced-Fit Binding and Bioactivity. Chemistry and Biology, 2010, 17, 183-194.	6.0	11
98	Cloning of a secA homolog from Streptomyces lividans 1326 and overexpression in both S. lividans and Escherichia coli. BBA - Proteins and Proteomics, 1996, 1296, 9-12.	2.1	10
99	Enzymes required for the biosynthesis of N-formylated sugars. Current Opinion in Structural Biology, 2016, 41, 1-9.	5.7	10
100	Detection of antibodies in neuropathy patients by synthetic GM1 mimics. Glycobiology, 2011, 21, 1642-1650.	2.5	9
101	Neurostatin and other O-acetylated gangliosides show anti-neuroinflammatory activity involving the NFκB pathway. Toxicology and Applied Pharmacology, 2019, 377, 114627.	2.8	9
102	Assessment of fed-batch cultivation strategies for an inducible CHO cell line. Journal of Biotechnology, 2019, 298, 45-56.	3.8	9
103	In Vitro Production and Immunogenicity of a Clostridium difficile Spore-Specific BclA3 Glycopeptide Conjugate Vaccine. Vaccines, 2020, 8, 73.	4.4	9
104	Genetics behind the Biosynthesis of Nonulosonic Acid-Containing Lipooligosaccharides in Campylobacter coli. Journal of Bacteriology, 2019, 201, .	2.2	9
105	Cloning and sequencing of the sec Y homolog from Streptomyces lividans 1326. Gene, 1996, 176, 265-267.	2.2	8
106	Chemoenzymatic synthesis of biotin-appended analogues of gangliosides GM2, GM1, GD1a and GalNAc-GD1a for solid-phase applications and improved ELISA tests. Organic and Biomolecular Chemistry, 2011, 9, 5809.	2.8	8
107	Specific Synthesis of Neurostatin and Gangliosides O-Acetylated in the Outer Sialic Acids Using a Sialate Transferase. PLoS ONE, 2012, 7, e49983.	2.5	8
108	Characterization of the dTDP-Fuc3N and dTDP-Qui3N biosynthetic pathways in Campylobacter jejuni 81116 â€. Glycobiology, 2017, 27, cww136.	2.5	7

#	Article	IF	CITATIONS
109	Biochemical Investigation of Rv3404c from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2017, 56, 3818-3825.	2.5	6
110	Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. Journal of Biotechnology, 2020, 307, 87-97.	3.8	5
111	Allylmalonamide as a bivalent linker: synthesis of biantennary GM3-saccharidekeyhole limpet hemocyanin glycoconjugate and the immune response in mice. Glycoconjugate Journal, 1999, 16, 507-515.	2.7	4
112	Process development for an inducible rituximabâ€expressing Chinese hamster ovary cell line. Biotechnology Progress, 2019, 35, e2742.	2.6	4
113	Role of the nonâ€hypervariable FR3 Dâ€E loop in singleâ€domain antibody recognition of haptens and carbohydrates. Journal of Molecular Recognition, 2019, 32, e2805.	2.1	3
114	Chemoenzymatic synthesis of an α-1,6-glucan-based conjugate vaccine against <i>Helicobacter pylori</i> . Glycobiology, 2022, 32, 691-700.	2.5	3
115	Selective Depletion of Neuropathy-Related Antibodies from Human Serum by Monolithic Affinity Columns Containing Ganglioside Mimics. Journal of Medicinal Chemistry, 2011, 54, 3500-3505.	6.4	1
116	The <i>Mycobacterium tuberculosis</i> complex has a pathway for the biosynthesis of 4â€formamidoâ€4,6â€dideoxyâ€ <scp>d</scp> â€glucose. Protein Science, 2018, 27, 1491-1497.	7.6	1
117	Selective Capture and Determination of Receptor-Binding Hemagglutinin in Influenza Vaccine Preparations Using a Coupled Receptor-Binding/RP-HPLC Assay. Analytical Chemistry, 2019, 91, 8908-8917.	6.5	1