
Frank M Faraci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of the Cerebral Circulation: Role of Endothelium and Potassium Channels. Physiological Reviews, 1998, 78, 53-97.	28.8	699
2	Impact of Hypertension on Cognitive Function: A Scientific Statement From the American Heart Association. Hypertension, 2016, 68, e67-e94.	2.7	482
3	Vascular Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1367-1373.	2.4	422
4	The Amygdala Is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior. Cell, 2009, 139, 1012-1021.	28.9	361
5	Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiological Reviews, 2021, 101, 1487-1559.	28.8	303
6	Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circulation Research, 2017, 120, 449-471.	4.5	286
7	Increased Superoxide and Vascular Dysfunction in CuZnSOD-Deficient Mice. Circulation Research, 2002, 91, 938-944.	4.5	213
8	Hyperhomocysteinemia, Oxidative Stress, and Cerebral Vascular Dysfunction. Stroke, 2004, 35, 345-347.	2.0	204
9	Endothelial Dysfunction and Elevation of <i>S</i> -Adenosylhomocysteine in Cystathionine β-Synthase–Deficient Mice. Circulation Research, 2001, 88, 1203-1209.	4.5	202
10	The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends in Molecular Medicine, 2008, 14, 495-502.	6.7	189
11	PPARÎ ³ Agonist Rosiglitazone Improves Vascular Function and Lowers Blood Pressure in Hypertensive Transgenic Mice. Hypertension, 2004, 43, 661-666.	2.7	184
12	Protecting against vascular disease in brain. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1566-H1582.	3.2	166
13	Reactive oxygen species: influence on cerebral vascular tone. Journal of Applied Physiology, 2006, 100, 739-743.	2.5	163
14	IL-6 Deficiency Protects Against Angiotensin II–Induced Endothelial Dysfunction and Hypertrophy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2576-2581.	2.4	160
15	Atherosclerosis, Vascular Remodeling, and Impairment of Endothelium-Dependent Relaxation in Genetically Altered Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2333-2340.	2.4	159
16	Gene Transfer of Extracellular Superoxide Dismutase Reduces Arterial Pressure in Spontaneously Hypertensive Rats. Circulation Research, 2003, 92, 461-468.	4.5	154
17	Interference with PPARÎ ³ Function in Smooth Muscle Causes Vascular Dysfunction and Hypertension. Cell Metabolism, 2008, 7, 215-226.	16.2	153
18	Role of Potassium Channels in Cerebral Blood Vessels. Stroke, 1995, 26, 1713-1723.	2.0	150

#	Article	IF	CITATIONS
19	SUBARACHNOID HAEMORRHAGE: WHAT HAPPENS TO THE CEREBRAL ARTERIES?. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 867-876.	1.9	149
20	Cerebral Vascular Dysfunction Mediated by Superoxide in Hyperhomocysteinemic Mice. Stroke, 2004, 35, 1957-1962.	2.0	146
21	Mechanisms of Bradykinin-Induced Cerebral Vasodilatation in Rats. Stroke, 1997, 28, 2290-2295.	2.0	144
22	Endogenous Interleukin-10 Inhibits Angiotensin II–Induced Vascular Dysfunction. Hypertension, 2009, 54, 619-624.	2.7	141
23	Free radical biology of the cardiovascular system. Clinical Science, 2012, 123, 73-91.	4.3	132
24	Role of Potassium Channels in Regulation of Cerebral Vascular Tone. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 1047-1063.	4.3	129
25	Microvascular Dysfunction and Cognitive Impairment. Cellular and Molecular Neurobiology, 2016, 36, 241-258.	3.3	126
26	MnSOD Deficiency Increases Endothelial Dysfunction in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2331-2336.	2.4	117
27	IL-10 deficiency increases superoxide and endothelial dysfunction during inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1555-H1562.	3.2	108
28	Responses of carotid artery in mice deficient in expression of the gene for endothelial NO synthase. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H564-H570.	3.2	107
29	Impaired Endothelium-Dependent Responses and Enhanced Influence of Rho-Kinase in Cerebral Arterioles in Type II Diabetes. Stroke, 2005, 36, 342-347.	2.0	105
30	Interference With PPARÎ ³ Signaling Causes Cerebral Vascular Dysfunction, Hypertrophy, and Remodeling. Hypertension, 2008, 51, 867-871.	2.7	104
31	Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1914-H1919.	3.2	102
32	Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood, 2004, 103, 2624-2629.	1.4	100
33	Deficiency of Glutathione Peroxidase-1 Sensitizes Hyperhomocysteinemic Mice to Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1996-2002.	2.4	99
34	Impact of ACE2 Deficiency and Oxidative Stress on Cerebrovascular Function With Aging. Stroke, 2012, 43, 3358-3363.	2.0	98
35	Cerebral Arteriolar Structure in Mice Overexpressing Human Renin and Angiotensinogen. Hypertension, 2003, 41, 50-55.	2.7	95
36	Role of Ca 2+ -Dependent K + Channels in Cerebral Vasodilatation Induced by Increases in Cyclic GMP and Cyclic AMP in the Rat. Stroke, 1996, 27, 1603-1608.	2.0	94

#	Article	IF	CITATIONS
37	Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H688-H695.	3.2	93
38	Cullin-3 Regulates Vascular Smooth Muscle Function and Arterial Blood Pressure via PPARÎ ³ and RhoA/Rho-Kinase. Cell Metabolism, 2012, 16, 462-472.	16.2	93
39	Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine β-synthase-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H970-H975.	3.2	89
40	Endothelium-Specific Interference With Peroxisome Proliferator Activated Receptor Gamma Causes Cerebral Vascular Dysfunction in Response to a High-Fat Diet. Circulation Research, 2008, 103, 654-661.	4.5	89
41	Effects of a Novel Inhibitor of Guanylyl Cyclase on Dilator Responses of Mouse Cerebral Arterioles. Stroke, 1997, 28, 837-843.	2.0	89
42	Cerebral Vascular Effects of Angiotensin II: New Insights from Genetic Models. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 449-455.	4.3	88
43	Cerebral Vascular Dysfunction During Hypercholesterolemia. Stroke, 2007, 38, 2136-2141.	2.0	85
44	Gene Therapy for Cerebral Vascular Disease. Stroke, 1996, 27, 1688-1693.	2.0	84
45	Hyperhomocysteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 371-373.	2.4	83
46	Effect of Aging, MnSOD Deficiency, and Genetic Background on Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1941-1946.	2.4	82
47	Mechanisms of Adrenomedullin-Induced Dilatation of Cerebral Arterioles. Stroke, 1997, 28, 181-185.	2.0	82
48	7-Nitroindazole Inhibits Brain Nitric Oxide Synthase and Cerebral Vasodilatation in Response to <i>N</i> -Methyl- <scp>d</scp> -aspartate. Stroke, 1995, 26, 2172-2176.	2.0	81
49	Angiotensin II Produces Superoxide-Mediated Impairment of Endothelial Function in Cerebral Arterioles. Stroke, 2003, 34, 2038-2042.	2.0	80
50	Glutathione Peroxidase-1 Plays a Major Role in Protecting Against Angiotensin II–Induced Vascular Dysfunction. Hypertension, 2008, 51, 872-877.	2.7	79
51	Cerebral Small Vessel Disease. Stroke, 2014, 45, 1215-1221.	2.0	79
52	Angiotensin II–Induced Vascular Dysfunction Is Mediated by the AT 1A Receptor in Mice. Hypertension, 2004, 43, 1074-1079.	2.7	78
53	Overexpression of Dimethylarginine Dimethylaminohydrolase Inhibits Asymmetric Dimethylarginine–Induced Endothelial Dysfunction in the Cerebral Circulation. Stroke, 2008, 39, 180-184.	2.0	78
54	Interleukin-10 Protects Nitric Oxide-Dependent Relaxation During Diabetes: Role of Superoxide. Diabetes, 2002, 51, 1931-1937.	0.6	77

#	Article	IF	CITATIONS
55	Vascular Effects of the Human Extracellular Superoxide Dismutase R213G Variant. Circulation, 2005, 112, 1047-1053.	1.6	77
56	Improvement of Relaxation in an Atherosclerotic Artery by Gene Transfer of Endothelial Nitric Oxide Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1752-1758.	2.4	76
57	Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1697-H1703.	3.2	76
58	Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3726-H3731.	3.2	75
59	Vascular Biology in Genetically Altered Mice. Circulation Research, 1999, 85, 1214-1225.	4.5	74
60	Endothelial Dysfunction and Blood Pressure Variability in Selected Inbred Mouse Strains. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 42-48.	2.4	74
61	Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. Journal of Applied Physiology, 2012, 113, 184-191.	2.5	74
62	Vasodilator mechanisms in the coronary circulation of endothelial nitric oxide synthase-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1906-H1912.	3.2	73
63	Gene Transfer of Calcitonin Gene–Related Peptide Prevents Vasoconstriction After Subarachnoid Hemorrhage. Circulation Research, 2000, 87, 818-824.	4.5	73
64	Heterozygous CuZn Superoxide Dismutase Deficiency Produces a Vascular Phenotype With Aging. Hypertension, 2006, 48, 1072-1079.	2.7	73
65	Regulation of the cerebral circulation by endothelium. , 1992, 56, 1-22.		72
66	Gene Transfer of Endothelial Nitric Oxide Synthase Reduces Angiotensin II–Induced Endothelial Dysfunction. Hypertension, 2000, 35, 595-601.	2.7	71
67	Nox2-Derived Superoxide Contributes to Cerebral Vascular Dysfunction in Diet-Induced Obesity. Stroke, 2013, 44, 3195-3201.	2.0	70
68	Gene Transfer of Extracellular Superoxide Dismutase Reduces Cerebral Vasospasm After Subarachnoid Hemorrhage. Stroke, 2003, 34, 434-440.	2.0	69
69	Adenovirus-Mediated Gene Transfer In Vivo to Cerebral Blood Vessels and Perivascular Tissue in Mice. Stroke, 1998, 29, 1411-1416.	2.0	68
70	Consequences of Hyperhomocyst(e)inemia on Vascular Function in Atherosclerotic Monkeys. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2930-2934.	2.4	67
71	Tumor Necrosis Factor-α–Induced Dilatation of Cerebral Arterioles. Stroke, 1998, 29, 509-515.	2.0	67
72	Structure of Cerebral Arterioles in Mice Deficient in Expression of the Gene for Endothelial Nitric Oxide Synthase. Circulation Research, 2004, 95, 822-829.	4.5	66

#	Article	IF	CITATIONS
73	Oxidative Stress. Stroke, 2005, 36, 186-188.	2.0	66
74	Role of Sex Differences and Effects of Endothelial NO Synthase Deficiency in Responses of Carotid Arteries to Serotonin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 523-528.	2.4	65
75	Dilatation of Cerebral Arterioles in Response to Activation of Adenylate Cyclase Is Dependent on Activation of Ca ²⁺ -Dependent K ⁺ Channels. Circulation Research, 1995, 76, 1057-1062.	4.5	65
76	Novel insights into M5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sciences, 2003, 74, 345-353.	4.3	64
77	Critical Role for CuZn-Superoxide Dismutase in Preventing Angiotensin II-Induced Endothelial Dysfunction. Hypertension, 2005, 46, 1147-1153.	2.7	62
78	Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1569-H1576.	3.2	61
79	Effects of endothelin on blood vessels of the brain and choroid plexus. Brain Research, 1990, 518, 78-82.	2.2	60
80	Impaired Endothelial Function in Transgenic Mice Expressing Both Human Renin and Human Angiotensinogen. Stroke, 2000, 31, 760-765.	2.0	60
81	Cerebral Vascular Dysfunction in Methionine Synthase–Deficient Mice. Circulation, 2005, 112, 737-744.	1.6	60
82	Role of inwardly rectifying K+ channels in K+-induced cerebral vasodilatation in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2704-H2712.	3.2	59
83	Small-Molecule Inhibitors of Signal Transducer and Activator of Transcription 3 Protect Against Angiotensin II–Induced Vascular Dysfunction and Hypertension. Hypertension, 2013, 61, 437-442.	2.7	59
84	Muscarinic (M) Receptors in Coronary Circulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1253-1258.	2.4	58
85	Hypertrophy of Cerebral Arterioles in Mice Deficient in Expression of the Gene for CuZn Superoxide Dismutase. Stroke, 2006, 37, 1850-1855.	2.0	58
86	Does Peroxisome Proliferator-activated Receptor-γ (PPARγ) Protect from Hypertension Directly through Effects in the Vasculature?. Journal of Biological Chemistry, 2010, 285, 9311-9316.	3.4	58
87	NO-Dependent Vasorelaxation Is Impaired After Gene Transfer of Inducible NO-Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1281-1287.	2.4	56
88	PPARÎ ³ Regulates Resistance Vessel Tone Through a Mechanism Involving RGS5-Mediated Control of Protein Kinase C and BKCa Channel Activity. Circulation Research, 2012, 111, 1446-1458.	4.5	56
89	Spontaneous Stroke in a Genetic Model of Hypertension in Mice. Stroke, 2005, 36, 1253-1258.	2.0	56
90	Effects of angiotensin II on the cerebral circulation: role of oxidative stress. Frontiers in Physiology, 2012, 3, 484.	2.8	55

#	Article	IF	CITATIONS
91	Contributions of Aging to Cerebral Small Vessel Disease. Annual Review of Physiology, 2020, 82, 275-295.	13.1	55
92	Vascular effects of LPS in mice deficient in expression of the gene for inducible nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H416-H421.	3.2	53
93	Tissue-specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H816-H825.	3.2	52
94	Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K ⁺ channels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R246-R253.	1.8	51
95	Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide. British Journal of Pharmacology, 1999, 126, 1437-1443.	5.4	50
96	Gene transfer of extracellular superoxide dismutase protects against vascular dysfunction with aging. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2600-H2605.	3.2	50
97	Interleukin-10 protects against aging-induced endothelial dysfunction. Physiological Reports, 2013, 1, e00149.	1.7	49
98	Quantification of mRNA for Endothelial NO Synthase in Mouse Blood Vessels by Real-Time Polymerase Chain Reaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 611-616.	2.4	48
99	Gene expression profiling of potential PPARÎ ³ target genes in mouse aorta. Physiological Genomics, 2004, 18, 33-42.	2.3	47
100	Augmented Adenovirus-Mediated Gene Transfer to Atherosclerotic Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1786-1792.	2.4	46
101	Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries. Hypertension, 2017, 69, 60-70.	2.7	46
102	Expression and Vascular Effects of Cyclooxygenase-2 in Brain. Stroke, 1998, 29, 2600-2606.	2.0	45
103	Gene-Targeted Mice Reveal a Critical Role for Inducible Nitric Oxide Synthase in Vascular Dysfunction During Diabetes. Stroke, 2003, 34, 2970-2974.	2.0	44
104	Cerebral vascular dysfunction in TallyHo mice: a new model of Type II diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1579-H1583.	3.2	44
105	Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1606-H1612.	3.2	43
106	Selective cerebral vascular dysfunction in Mn-SOD-deficient mice. Journal of Applied Physiology, 2006, 100, 2089-2093.	2.5	42
107	Gene transfer of calcitonin gene-related peptide to cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H586-H594.	3.2	41
108	Gene transfer of extracellular superoxide dismutase improves endothelial function in rats with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H525-H532.	3.2	40

#	Article	IF	CITATIONS
109	Enhanced Responses of the Basilar Artery to Activation of Endothelin-B Receptors in Stroke-Prone Spontaneously Hypertensive Rats. Hypertension, 1995, 25, 490-494.	2.7	40
110	Agonist-specific impairment of coronary vascular function in genetically altered, hyperlipidemic mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1023-R1029.	1.8	39
111	Vascular Effects of Lipopolysaccharide Are Enhanced in Interleukin-10–Deficient Mice. Stroke, 1999, 30, 2191-2196.	2.0	39
112	Sex Differences in Protection Against Angiotensin II–Induced Endothelial Dysfunction by Manganese Superoxide Dismutase in the Cerebral Circulation. Hypertension, 2010, 55, 905-910.	2.7	39
113	Overexpression of Dimethylarginine Dimethylaminohydrolase Protects Against Cerebral Vascular Effects of Hyperhomocysteinemia. Circulation Research, 2010, 106, 551-558.	4.5	39
114	Responses of cerebral arterioles to ADP: eNOS-dependent and eNOS-independent mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2871-H2876.	3.2	38
115	20-Hydroxyeicosatetraenoic acid is a potent dilator of mouse basilar artery: role of cyclooxygenase. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2301-H2307.	3.2	38
116	Angiotensin 1–7 Reduces Mortality and Rupture of Intracranial Aneurysms in Mice. Hypertension, 2014, 64, 362-368.	2.7	38
117	Mildly Oxidized Low-Density Lipoprotein Impairs Responses of Carotid but Not Basilar Artery in Rabbits. Stroke, 1997, 28, 2266-2272.	2.0	38
118	Overexpression of CuZn-SOD Prevents Lipopolysaccharide-Induced Endothelial Dysfunction. Stroke, 2004, 35, 1963-1967.	2.0	37
119	Protecting the Brain With eNOS. Circulation Research, 2006, 99, 1029-1030.	4.5	37
120	Endothelium-Derived Relaxing Factor Inhibits Constrictor Responses of Large Cerebral Arteries to Serotonin. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 500-506.	4.3	36
121	Ceramide-Induced Impairment of Endothelial Function Is Prevented by CuZn Superoxide Dismutase Overexpression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 90-95.	2.4	34
122	Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. Journal of Hypertension, 2014, 32, 1815-1821.	0.5	34
123	Neuronal expression and regulation of CGRP promoter activity following viral gene transfer into cultured trigeminal ganglia neurons. Brain Research, 2004, 997, 103-110.	2.2	33
124	Changes in Cerebral Arteries and Parenchymal Arterioles With Aging. Hypertension, 2018, 71, 921-927.	2.7	33
125	Mechanisms That Produce Nitric Oxide–Mediated Relaxation of Cerebral Arteries During Atherosclerosis. Stroke, 2001, 32, 761-766.	2.0	32
126	Impairment of Dilator Responses of Cerebral Arterioles During Diabetes Mellitus. Stroke, 2006, 37, 2129-2133.	2.0	32

#	Article	IF	CITATIONS
127	Oxidative Stress through Activation of NAD(P)H Oxidase in Hypertensive Mice with Spontaneous Intracranial Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1175-1185.	4.3	32
128	Paradoxical absence of a prothrombotic phenotype in a mouse model of severe hyperhomocysteinemia. Blood, 2012, 119, 3176-3183.	1.4	32
129	Interference with PPARÎ ³ in endothelium accelerates angiotensin II-induced endothelial dysfunction. Physiological Genomics, 2016, 48, 124-134.	2.3	32
130	Endothelial PPARγ (Peroxisome Proliferator–Activated Receptor-γ) Is Essential for Preventing Endothelial Dysfunction With Aging. Hypertension, 2018, 72, 227-234.	2.7	31
131	Role of soluble guanylate cyclase in dilator responses of the cerebral microcirculation. Brain Research, 1999, 821, 368-373.	2.2	30
132	Potassium channels modulate cerebral autoregulation during acute hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H2003-H2007.	3.2	30
133	Role of Hydrogen Peroxide and the Impact of Glutathione Peroxidase-1 in Regulation of Cerebral Vascular Tone. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1130-1137.	4.3	30
134	l -Arginine Restores Dilator Responses of the Basilar Artery to Acetylcholine During Chronic Hypertension. Hypertension, 1996, 27, 893-896.	2.7	30
135	Acid-Sensing Ion Channels. Circulation Research, 2019, 125, 907-920.	4.5	29
136	Vasomotor responses in MnSOD-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1141-H1148.	3.2	28
137	Vascular effects of a common gene variant of extracellular superoxide dismutase in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H914-H920.	3.2	28
138	Smooth Muscle Peroxisome Proliferator–Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo. Hypertension, 2015, 66, 211-220.	2.7	28
139	Effects of vasodilatation and acidosis on the blood-brain barrier. Microvascular Research, 1988, 35, 179-192.	2.5	27
140	Gene Transfer of Extracellular Superoxide Dismutase Increases Superoxide Dismutase Activity in Cerebrospinal Fluid. Stroke, 2001, 32, 184-189.	2.0	26
141	Modulation of Dilator Responses of Cerebral Arterioles by Extracellular Superoxide Dismutase. Stroke, 2006, 37, 2802-2806.	2.0	26
142	Bioinformatic Analysis of Gene Sets Regulated by Ligand-Activated and Dominant-Negative Peroxisome Proliferator–Activated Receptor γ in Mouse Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 518-525.	2.4	26
143	Role of Peroxisome Proliferator–Activated Receptor-γ in Vascular Muscle in the Cerebral Circulation. Hypertension, 2014, 64, 1088-1093.	2.7	26
144	Heterogeneous Impact of ROCK2 on Carotid and Cerebrovascular Function. Hypertension, 2016, 68, 809-817.	2.7	26

#	Article	IF	CITATIONS
145	Gene transfer of endothelial nitric oxide synthase (eNOS) in eNOS-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H770-H776.	3.2	25
146	Enhanced vasoconstrictor responses in eNOS deficient mice. Nitric Oxide - Biology and Chemistry, 2003, 8, 207-213.	2.7	25
147	Peroxynitrite hyperpolarizes smooth muscle and relaxes internal carotid artery in rabbit via ATP-sensitive K+ channels. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2244-H2250.	3.2	25
148	Dilatation of Cerebral Arterioles in Response to Lipopolysaccharide In Vivo. Stroke, 1995, 26, 277-281.	2.0	25
149	Receptor Activity-Modifying Protein-1 Augments Cerebrovascular Responses to Calcitonin Gene-Related Peptide and Inhibits Angiotensin II-Induced Vascular Dysfunction. Stroke, 2010, 41, 2329-2334.	2.0	24
150	Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator–Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate–Salt Hypertension. Hypertension, 2016, 67, 214-222.	2.7	24
151	Peroxisome proliferator-activated receptor-Î ³ protects against vascular aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1184-R1190.	1.8	23
152	Vascular Protection. Stroke, 2003, 34, 327-329.	2.0	22
153	POTASSIUM CHANNELS AND THE CEREBRAL CIRCULATION. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1091-1095.	1.9	21
154	COX-2-dependent delayed dilatation of cerebral arterioles in response to bradykinin. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2023-H2029.	3.2	21
155	Genetic Interference With Peroxisome Proliferator–Activated Receptor γ in Smooth Muscle Enhances Myogenic Tone in the Cerebrovasculature via A Rho Kinase–Dependent Mechanism. Hypertension, 2015, 65, 345-351.	2.7	21
156	Relaxation of the Carotid Artery to Hypoxia Is Impaired in Watanabe Heritable Hyperlipidemic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1641-1645.	2.4	20
157	Gene transfer of extracellular superoxide dismutase improves relaxation of aorta after treatment with endotoxin. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H805-H811.	3.2	20
158	Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia. PLoS ONE, 2017, 12, e0175732.	2.5	20
159	Neuronal NO Mediates Cerebral Vasodilator Responses to K + in Hypertensive Rats. Hypertension, 2002, 39, 880-885.	2.7	19
160	Effect of Subarachnoid Hemorrhage on Cerebral Vasodilatation in Response to Activation of ATP-Sensitive K + Channels in Chronically Hypertensive Rats. Stroke, 1997, 28, 392-397.	2.0	19
161	Adenovirus-Mediated Gene Transfer Is Augmented in Basilar and Carotid Arteries of Heritable Hyperlipidemic Rabbits. Stroke, 1999, 30, 120-125.	2.0	18
162	Activation of Rho-associated kinase during augmented contraction of the basilar artery to serotonin after subarachnoid hemorrhage. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2653-H2658.	3.2	18

#	Article	IF	CITATIONS
163	Effects of a common human gene variant of extracellular superoxide dismutase on endothelial function after endotoxin in mice. Journal of Physiology, 2007, 584, 583-590.	2.9	17
164	Protective Vascular and Cardiac Effects of Inducible Nitric Oxide Synthase in Mice with Hyperhomocysteinemia. PLoS ONE, 2014, 9, e107734.	2.5	17
165	Vascular interleukin-10 protects against LPS-induced vasomotor dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H624-H630.	3.2	16
166	Genetic Interference With Endothelial PPAR-γ (Peroxisome Proliferator–Activated Receptor-γ) Augments Effects of Angiotensin II While Impairing Responses to Angiotensin 1–7. Hypertension, 2017, 70, 559-565.	2.7	16
167	Effect of Short-term Regression of Atherosclerosis on Reactivity of Carotid and Retinal Arteries. Stroke, 1996, 27, 927-933.	2.0	15
168	Increase in TUNEL Positive Cells in Aorta from Diabetic Rats. Endothelium: Journal of Endothelial Cell Research, 1997, 5, 241-250.	1.7	13
169	Paradoxical Increase in Mortality and Rupture of Intracranial Aneurysms in Microsomal Prostaglandin E2 Synthase Type 1-Deficient Mice. Neurosurgery, 2015, 77, 613-620.	1.1	13
170	Context-dependent effects of SOCS3 in angiotensin II-induced vascular dysfunction and hypertension in mice: mechanisms and role of bone marrow-derived cells. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H146-H156.	3.2	13
171	Responses of cerebral arterioles to N-methyl-d-aspartate and activation of ATP-sensitive potassium channels in old rats. Brain Research, 1994, 654, 349-351.	2.2	11
172	Activation of the Central Renin-Angiotensin System Causes Local Cerebrovascular Dysfunction. Stroke, 2021, 52, 2404-2413.	2.0	11
173	Approaches to Enhance Expression After Adenovirus-Mediated Gene Transfer to the Carotid Artery. Endothelium: Journal of Endothelial Cell Research, 1999, 7, 75-82.	1.7	8
174	Watching Small Vessel Disease Grow. Circulation Research, 2018, 122, 810-812.	4.5	8
175	Cerebral Vascular Dysfunction with Aging. , 2011, , 405-419.		8
176	Relaxation of the Aorta During Hypoxia Is Impaired in Chronically Hypertensive Rats. Hypertension, 1995, 25, 735-738.	2.7	8
177	Tumor necrosis factor-α impairs contraction but not relaxation in carotid arteries from iNOS-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1558-R1564.	1.8	7
178	Knockout Blow for Channel Identity Crisis. Circulation Research, 2000, 87, 83-84.	4.5	6
179	nNOS-Containing Perivascular Nerves. Circulation Research, 2002, 91, 7-8.	4.5	5
180	Novel mechanisms contributing to cerebral vascular dysfunction during chronic hypertension. Current Hypertension Reports, 2001, 3, 517-523.	3.5	4

IF # ARTICLE CITATIONS Trans -Forming Endothelial Nitric Oxide Synthase in Hypertension. Hypertension, 2011, 58, 359-360. Endothelium, the Bloodâ€"Brain Barrier, and Hypertension. , 2016, , 155-180. 182 4 Disease Highlights the Cellular Diversity of Neurovascular Units. Circulation Research, 2017, 121, 4.5 203-205. Gene therapy of hypertensive vascular injury. Current Hypertension Reports, 2000, 2, 92-97. 184 3.5 3 Leaky vessels: how the brain deals with pregnancy under pressure. Journal of Applied Physiology, 2011, 2.5 110, 305-306. Cerebral vascular effects of angiotensin II: New insights from genetic models. Journal of Cerebral 186 4.3 3 Blood Flow and Metabolism, 2005, 25, S156-S156. Cerebral Vascular Dysfunction in Methionine Synthase-Deficient Mice.. Blood, 2004, 104, 2617-2617. 1.4 Real-Time Polymerase Chain Reaction to Quantify mRNA for Endothelial Nitric Oxide Synthase., 2004, 188 2 279, 125-132. Surviving the Remodel. Hypertension, 2008, 51, 995-996. 190 Breathe, Breathe in the Air. Hypertension, 2012, 60, 22-24. 2.7 9 Response to Letter Regarding Article, "Impact of ACE2 Deficiency and Oxidative Stress on 2.0 Cerebrovascular Function With Agingâ€. Stroke, 2013, 44, e35. Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone. Oxidative Stress in Applied 192 2 0.4 Basic Research and Clinical Practice, 2017, , 89-112. Microvascular changes that stagger the mind. Journal of Clinical Investigation, 2021, 131, . 8.2 Oxidative Stress in Hypertension., 2008, , 229-251. 194 2 Activation of the Central Reninâ€Angiotensin System (RAS) Causes Selective Cerebrovascular Dysfunction. FASEB Journal, 2015, 29, 646.4. Angiotensin llâ€induced endothelial dysfunction: Impact of sex, genetic background, and rho kinase. 196 1.7 2 Physiological Reports, 2022, 10, . Vascular Biology. Circulation Research, 2002, 90, 749-750. 4.5 198 ATVB In Focus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 728-728. 2.4 1

#	Article	IF	CITATIONS
199	Cerebral Vascular Function in Genetically Altered Mice. , 2003, 89, 505-512.		1
200	Editorial Comment: eNOS: Can We Exploit the Good?. Stroke, 2005, 36, 160-161.	2.0	1
201	Vascular Biology and Atherosclerosis of Cerebral Arteries. , 2004, , 763-774.		1
202	Role of Endothelium in Regulation of the Brain Microcirculation. , 2003, , 17-25.		1
203	Protective role of manganese superoxide dismutase against angiotensin IIâ€induced, nox2â€dependent cerebral endothelial dysfunction. FASEB Journal, 2007, 21, A1262.	0.5	1
204	Interleukinâ€10 Protects Against Vascular Dysfunction with Aging. FASEB Journal, 2009, 23, 805.15.	0.5	1
205	Vasomotor effects of nitric oxide, superoxide dismutases and calcitonin gene-related peptide. , 2002, , 284-296.		0
206	Response to Letter by Tsuda. Stroke, 2011, 42, .	2.0	0
207	Neurovascular coupling: Sending this signal here, hope you pick it up loud and clear. Journal of Physiology, 2020, 598, 4745-4746.	2.9	0
208	Overexpression of DDAHâ€l in mice inhibits effects of ADMA on endothelial function in the cerebral circulation FASEB Journal, 2006, 20, A731.	0.5	0
209	Interleukinâ€10 Protects Against Angiotensin Ilâ€Induced Oxidative Stress and Endothelial Dysfunction. FASEB Journal, 2006, 20, A307.	0.5	Ο
210	Angiotensin II (Ang II)â€Induced Oxidative Stress and Endothelial Dysfunction in the Cerebral Circulation. FASEB Journal, 2006, 20, LB15.	0.5	0
211	Genetic Evidence that Cerebrovascular Responses to Arachidonic Acid are Mediated by Hydrogen Peroxide Produced by SODâ€1. FASEB Journal, 2007, 21, A1384.	0.5	0
212	Protective effect of PPARÎ ³ in the vascular wall: Insight from mice expressing the P465L dominant negative mutation in PPARÎ ³ . FASEB Journal, 2007, 21, A1200.	0.5	0
213	Oxidative stress after intracranial hemorrhage. FASEB Journal, 2007, 21, A396.	0.5	0
214	Interleukinâ€6â€Deficiency Protects Against Both Acute and Chronic Angiotensin IIâ€Induced Endothelial Dysfunction. FASEB Journal, 2007, 21, .	0.5	0
215	Role of Oxidative Stress and Angiotensin II in Cerebral Vascular Dysfunction with Aging. FASEB Journal, 2008, 22, 1151.21.	0.5	0
216	Endothelial Dysfunction and Paradoxical Resistance to Thrombosis in a Transgenic Mouse Model of Severe Hyperhomocysteinemia Blood, 2008, 112, 1889-1889.	1.4	0

#	Article	IF	CITATIONS
217	Evidence for a Protective Role for Receptor Activity Modifying Proteinâ€1 (RAMP1) in Angiotensin Ilâ€Induced Endothelial Dysfunction. FASEB Journal, 2009, 23, 1017.24.	0.5	0
218	Interference with Peroxisome Proliferator Activated Receptor Gamma (PPARG) in smooth muscle causes aortic dysfunction via a Rhoâ€kinaseâ€dependent mechanism. FASEB Journal, 2010, 24, 980.6.	0.5	0
219	Role of vascular muscle Peroxisome Proliferatorâ€Activated Receptorâ€gamma (PPAR gamma) in the regulation of resistance vessel tone. FASEB Journal, 2010, 24, 776.2.	0.5	0
220	ACE2 Deficiency Augments Cerebrovascular Dysfunction during Aging. FASEB Journal, 2012, 26, lb651.	0.5	0
221	Interference of peroxisome proliferatorâ€activated receptorâ€gamma (PPAG) in vascular muscle enhances myogenic tone in small resistance arteries via protein kinase C (PKC)â€induced inhibition of large conductance Ca2+â€activated K+ channel (BKCa) activity. FASEB Journal, 2012, 26, 1058.6.	0.5	0
222	Cerebrovascular oxidative stress and endothelial dysfunction in response to aldosterone is Nox2â€mediated. FASEB Journal, 2012, 26, 685.5.	0.5	0
223	A small molecule inhibitor of signal transducer and activator of transcription 3 (STAT3) protects against angiotensin Ilâ€induced vascular dysfunction and hypertension. FASEB Journal, 2012, 26, 872.13.	0.5	0
224	Interference with PPARγ in endothelium accelerates angiotensin llâ€mediated vascular dysfunction. FASEB Journal, 2013, 27, 901.7.	0.5	0
225	Genetic interference with peroxisome proliferatorâ€activated receptor γ (PPARγ) in smooth muscle enhances cerebrovascular myogenic tone via a rho kinaseâ€dependent mechanism. FASEB Journal, 2013, 27, 925.1.	0.5	0