List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2490727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536, 312-316.	27.8	2,767
2	Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Letters, 2010, 10, 3209-3215.	9.1	2,317
3	Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13, 1135-1142.	27.5	1,918
4	Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 2013, 13, 2615-2622.	9.1	1,766
5	Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 2013, 12, 754-759.	27.5	1,590
6	Largeâ€Area Vaporâ€Phase Growth and Characterization of MoS ₂ Atomic Layers on a SiO ₂ Substrate. Small, 2012, 8, 966-971.	10.0	1,556
7	Black Phosphorus–Monolayer MoS ₂ van der Waals Heterojunction p–n Diode. ACS Nano, 2014, 8, 8292-8299.	14.6	1,125
8	Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano, 2017, 11, 8192-8198.	14.6	1,001
9	In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8, 119-124.	31.5	796
10	Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe ₂ . ACS Nano, 2014, 8, 5125-5131.	14.6	694
11	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /gâ€C ₃ N ₄ Zâ€Scheme Catalysts. Advanced Energy Materials, 2017, 7, 1700025.	/ 19.5	664
12	Composites with carbon nanotubes and graphene: An outlook. Science, 2018, 362, 547-553.	12.6	662
13	Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS Nano, 2017, 11, 8242-8248.	14.6	599
14	Fracture toughness of graphene. Nature Communications, 2014, 5, 3782.	12.8	567
15	Achieving Highly Efficient, Selective, and Stable CO ₂ Reduction on Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2015, 9, 5364-5371.	14.6	546
16	Second harmonic microscopy of monolayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 87, .</mml:math 	3.2	539
17	Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nature Communications, 2013, 4, 2541.	12.8	536
18	Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano, 2014, 8, 1263-1272.	14.6	534

#	Article	IF	CITATIONS
19	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	21.0	516
20	A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications, 2016, 7, 13869.	12.8	505
21	Two-Step Growth of Two-Dimensional WSe ₂ /MoSe ₂ Heterostructures. Nano Letters, 2015, 15, 6135-6141.	9.1	479
22	Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers. Nano Letters, 2011, 11, 2032-2037.	9.1	466
23	Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano Letters, 2014, 14, 442-449.	9.1	463
24	Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014, 5, 5246.	12.8	453
25	Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters, 2015, 15, 5449-5454.	9.1	436
26	Incorporation of Nitrogen Defects for Efficient Reduction of CO ₂ via Two-Electron Pathway on Three-Dimensional Graphene Foam. Nano Letters, 2016, 16, 466-470.	9.1	435
27	Cold welding of ultrathin gold nanowires. Nature Nanotechnology, 2010, 5, 218-224.	31.5	432
28	Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS ₂ for Fast Photodetection Application. Nano Letters, 2015, 15, 506-513.	9.1	430
29	Facile Fabrication of Nitrogenâ€Đoped Porous Carbon as Superior Anode Material for Potassiumâ€ŀon Batteries. Advanced Energy Materials, 2018, 8, 1802386.	19.5	393
30	Porous Spinel Zn _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Hollow Polyhedra Templated for High-Rate Lithium-Ion Batteries. ACS Nano, 2014, 8, 6297-6303.	14.6	392
31	Nitrogenâ€Doped Carbon Nanotube Arrays for Highâ€Efficiency Electrochemical Reduction of CO ₂ : On the Understanding of Defects, Defect Density, and Selectivity. Angewandte Chemie - International Edition, 2015, 54, 13701-13705.	13.8	382
32	Synthesis and Photoresponse of Large GaSe Atomic Layers. Nano Letters, 2013, 13, 2777-2781.	9.1	381
33	Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy, 2016, 27, 138-146.	16.0	379
34	Self-optimizing, highly surface-active layeredÂmetal dichalcogenide catalysts for hydrogen evolution. Nature Energy, 2017, 2, .	39.5	336
35	Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science, 2014, 346, 1092-1096.	12.6	329
36	Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nature Communications, 2016, 7, 12512.	12.8	313

#	Article	IF	CITATIONS
37	Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires near a Patterned Solid Surface. ACS Nano, 2010, 4, 6228-6234.	14.6	269
38	Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides. Nano Letters, 2018, 18, 3943-3949.	9.1	267
39	Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 andÂWS2. Nature Physics, 2015, 11, 830-834.	16.7	253
40	An Atomically Layered InSe Avalanche Photodetector. Nano Letters, 2015, 15, 3048-3055.	9.1	253
41	High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydrate Polymers, 2017, 155, 345-353.	10.2	251
42	Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS ₂ . Advanced Materials, 2017, 29, 1701955.	21.0	249
43	Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2015, 7, 14763-14769.	8.0	248
44	Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2015, 27, 5605-5609.	21.0	241
45	2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220, 379-385.	20.2	231
46	Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: An Insight into Current Flow across Schottky Barriers. ACS Nano, 2014, 8, 1031-1038.	14.6	224
47	Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Applied Physics Letters, 2012, 100, .	3.3	220
48	Binary and Ternary Atomic Layers Built from Carbon, Boron, and Nitrogen. Advanced Materials, 2012, 24, 4878-4895.	21.0	219
49	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	6.7	219
50	Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS ₂ with resonant plasmonic nanoshells. Applied Physics Letters, 2014, 104, 031112.	3.3	208
51	Three-Dimensional Metal–Graphene–Nanotube Multifunctional Hybrid Materials. ACS Nano, 2013, 7, 58-64.	14.6	202
52	Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Applied Physics Letters, 2013, 102, .	3.3	201
53	Temperature-dependent phonon shifts in monolayer MoS2. Applied Physics Letters, 2013, 103, .	3.3	199
54	Plasmonic Pumping of Excitonic Photoluminescence in Hybrid MoS ₂ –Au Nanostructures. ACS Nano, 2014, 8, 12682-12689.	14.6	198

#	Article	IF	CITATIONS
55	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nature Communications, 2014, 5, 3193.	12.8	198
56	Statistical Study of Deep Submicron Dual-Gated Field-Effect Transistors on Monolayer Chemical Vapor Deposition Molybdenum Disulfide Films. Nano Letters, 2013, 13, 2640-2646.	9.1	197
57	Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry. Nature Nanotechnology, 2016, 11, 465-471.	31.5	197
58	CVD-grown monolayered MoS ₂ as an effective photosensor operating at low-voltage. 2D Materials, 2014, 1, 011004.	4.4	195
59	Cobalt-Modulated Molybdenum–Dinitrogen Interaction in MoS ₂ for Catalyzing Ammonia Synthesis. Journal of the American Chemical Society, 2019, 141, 19269-19275.	13.7	189
60	Photoluminescence Quenching and Charge Transfer in Artificial Heterostacks of Monolayer Transition Metal Dichalcogenides and Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 555-563.	14.6	183
61	Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nature Communications, 2016, 7, 11857.	12.8	179
62	Three-Dimensional Printed Graphene Foams. ACS Nano, 2017, 11, 6860-6867.	14.6	172
63	Laminated Object Manufacturing of 3Dâ€₽rinted Laserâ€Induced Graphene Foams. Advanced Materials, 2018, 30, e1707416.	21.0	172
64	Optoelectronic Memory Using Two-Dimensional Materials. Nano Letters, 2015, 15, 259-265.	9.1	163
65	Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Materials, 2014, 2, .	5.1	155
66	High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Advanced Materials Technologies, 2017, 2, 1700078.	5.8	153
67	MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chemical Communications, 2015, 51, 3109-3112.	4.1	145
68	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 2020, 577, 492-496.	27.8	145
69	Nanomechanical cleavage of molybdenum disulphide atomic layers. Nature Communications, 2014, 5, 3631.	12.8	144
70	High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. Carbon, 2018, 130, 487-494.	10.3	144
71	Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application. Chemical Engineering Journal, 2018, 347, 12-18.	12.7	143
72	Defectâ€Engineeringâ€Enabled Highâ€Efficiency Allâ€Inorganic Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903448.	21.0	143

#	Article	IF	CITATIONS
73	Synthesis and Defect Investigation of Two-Dimensional Molybdenum Disulfide Atomic Layers. Accounts of Chemical Research, 2015, 48, 31-40.	15.6	140
74	Brittle Fracture of 2D MoSe ₂ . Advanced Materials, 2017, 29, 1604201.	21.0	138
75	Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium. Advanced Materials Interfaces, 2016, 3, 1500669.	3.7	136
76	A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chemical Engineering Journal, 2018, 345, 536-544.	12.7	136
77	Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2003.	30.8	135
78	Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry. Nano Letters, 2014, 14, 1354-1361.	9.1	129
79	Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9455-E9464.	7.1	129
80	Gold Nanoparticles and gâ€C ₃ N ₄ â€Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Advanced Functional Materials, 2017, 27, 1701714.	14.9	129
81	Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small, 2016, 12, 2741-2749.	10.0	128
82	Nanostructure on Taro Leaves Resists Fouling by Colloids and Bacteria under Submerged Conditions. Langmuir, 2011, 27, 10035-10040.	3.5	124
83	Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Research, 2017, 10, 2386-2394.	10.4	124
84	Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. Nano Letters, 2016, 16, 3314-3320.	9.1	122
85	Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide. ACS Nano, 2014, 8, 7930-7937.	14.6	121
86	Boron Nitride–Graphene Nanocapacitor and the Origins of Anomalous Size-Dependent Increase of Capacitance. Nano Letters, 2014, 14, 1739-1744.	9.1	120
87	Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & amp; Interfaces, 2015, 7, 11991-12000.	8.0	120
88	Bio-derived ultrathin membrane for solar driven water purification. Nano Energy, 2019, 60, 567-575.	16.0	116
89	Nanoantenna-Enhanced Light–Matter Interaction in Atomically Thin WS ₂ . ACS Photonics, 2015, 2, 1260-1265.	6.6	114
90	Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chemical Engineering Journal, 2018, 334, 184-190.	12.7	113

#	Article	IF	CITATIONS
91	Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nature Communications, 2020, 11, 2253.	12.8	112
92	Fracture of Subâ€⊋0nm Ultrathin Gold Nanowires. Advanced Functional Materials, 2011, 21, 3982-3989.	14.9	111
93	Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon, 2018, 138, 264-270.	10.3	110
94	Selective membranes in water and wastewater treatment: Role of advanced materials. Materials Today, 2021, 50, 516-532.	14.2	106
95	Intrinsic toughening and stable crack propagation in hexagonal boron nitride. Nature, 2021, 594, 57-61.	27.8	105
96	On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mechanics of Materials, 2003, 35, 233-243.	3.2	103
97	Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2015, 7, 14813-14816.	5.6	103
98	Hierarchical layer-by-layer porous FeCo ₂ S ₄ @Ni(OH) ₂ arrays for all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 20480-20490.	10.3	102
99	Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Scientific Reports, 2013, 3, 2086.	3.3	96
100	Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Applied Physics Letters, 2014, 104, .	3.3	96
101	Band Engineering for Novel Twoâ€Đimensional Atomic Layers. Small, 2015, 11, 1868-1884.	10.0	96
102	Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy, 2020, 72, 104657.	16.0	93
103	3D-printed silica with nanoscale resolution. Nature Materials, 2021, 20, 1506-1511.	27.5	93
104	Indentation size effects in the nano- and micro-hardness of fcc single crystal metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 178-187.	5.6	92
105	A flexible solar cell/supercapacitor integrated energy device. Nano Energy, 2017, 42, 181-186.	16.0	92
106	Interface Toughness of Carbon Nanotube Reinforced Epoxy Composites. ACS Applied Materials & Interfaces, 2011, 3, 129-134.	8.0	91
107	Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments. ACS Nano, 2017, 11, 12780-12788.	14.6	89
108	Vertically Aligned Single-Walled Carbon Nanotubes as Low-cost and High Electrocatalytic Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 3157-3161.	8.0	88

#	Article	IF	CITATIONS
109	Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nature Nanotechnology, 2020, 15, 1025-1032.	31.5	88
110	TaC Nanowire/Activated Carbon Microfiber Hybrid Structures from Bamboo Fibers. Advanced Energy Materials, 2011, 1, 534-539.	19.5	87
111	Synthesis of reduced graphene oxide–Fe3O4 multifunctional freestanding membranes and their temperature dependent electronic transport properties. Carbon, 2012, 50, 1338-1345.	10.3	87
112	Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries. Journal of Power Sources, 2019, 414, 308-316.	7.8	87
113	High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles. Scientific Reports, 2012, 2, 368.	3.3	83
114	A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 2019, 30, 17-25.	14.2	83
115	Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Applied Physics Letters, 2013, 102, .	3.3	81
116	A fast and zero-biased photodetector based on GaTe–InSe vertical 2D p–n heterojunction. 2D Materials, 2018, 5, 025008.	4.4	81
117	Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers. Nanoscale, 2013, 5, 9758.	5.6	80
118	Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Research, 2011, 4, 1261-1267.	10.4	79
119	Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 2020, 40, 132-139.	14.2	79
120	MoS ₂ atomic layers with artificial active edge sites as transparent counter electrodes for improved performance of dye-sensitized solar cells. Nanoscale, 2014, 6, 5279-5283.	5.6	78
121	A Hybrid Metal–Organic Framework–Reduced Graphene Oxide Nanomaterial for Selective Removal of Chromate from Water in an Electrochemical Process. Environmental Science & Technology, 2020, 54, 13322-13332.	10.0	78
122	An investigation of fatigue in LIGA Ni MEMS thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 256-266.	5.6	76
123	A generic bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC, TixNb1â [~] xC,) Tj E	TQg <u>1</u> 10.	784314 rgBT
124	Synthesis of Highâ€Quality Graphene and Hexagonal Boron Nitride Monolayer Inâ€Plane Heterostructure on Cu–Ni Alloy. Advanced Science, 2017, 4, 1700076.	11.2	76
125	Multiscale Geometric Design Principles Applied to 3D Printed Schwarzites. Advanced Materials, 2018, 30, 1704820.	21.0	76
126	TiC Nanorods Derived from Cotton Fibers: Chloride-Assisted VLS Growth, Structure, and Mechanical Properties. Crystal Growth and Design, 2011, 11, 4422-4426.	3.0	74

#	Article	IF	CITATIONS
127	Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 17386-17399.	10.3	72
128	Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon, 2020, 158, 456-464.	10.3	72
129	Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques. Materials Science and Engineering C, 2011, 31, 1852-1856.	7.3	71
130	Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries. Joule, 2019, 3, 1349-1359.	24.0	70
131	Low Contact Barrier in 2H/1T′ MoTe ₂ In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2019, 11, 12777-12785.	8.0	70
132	Doping Nanoscale Graphene Domains Improves Magnetism in Hexagonal Boron Nitride. Advanced Materials, 2019, 31, e1805778.	21.0	69
133	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	10.0	69
134	Sizeâ€Dependent Fracture Mode Transition in Copper Nanowires. Small, 2012, 8, 1889-1894.	10.0	67
135	Effect of Nitrogen Doping on the Mechanical Properties of Carbon Nanotubes. ACS Nano, 2010, 4, 7637-7643.	14.6	65
136	High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 1574-1581.	10.3	65
137	Monolayer MoS ₂ Nanoribbon Transistors Fabricated by Scanning Probe Lithography. Nano Letters, 2019, 19, 2092-2098.	9.1	64
138	Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon, 2011, 49, 2475-2482.	10.3	63
139	Layer Engineering of 2D Semiconductor Junctions. Advanced Materials, 2016, 28, 5126-5132.	21.0	63
140	In Situ Synthesis of Lead-Free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. , 2022, 4, 464-471.		63
141	Development and Application of a Novel Microfabricated Device for the <i>In Situ </i> Tensile Testing of 1-D Nanomaterials. Journal of Microelectromechanical Systems, 2010, 19, 675-682.	2.5	62
142	An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nature Communications, 2022, 13, .	12.8	62
143	<i>In situ</i> electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates. Journal of Applied Physics, 2011, 109, .	2.5	61
144	Quantitative <i>in situ</i> TEM tensile testing of an individual nickel nanowire. Nanotechnology, 2011, 22, 355702.	2.6	61

#	Article	IF	CITATIONS
145	Mechanisms of fatigue in LIGA Ni MEMS thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 39-50.	5.6	60
146	Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS ₂ . ACS Nano, 2015, 9, 840-849.	14.6	58
147	Discovering superior basal plane active two-dimensional catalysts for hydrogen evolution. Materials Today, 2019, 25, 28-34.	14.2	58
148	A Multi-step Method for In Situ Mechanical Characterization of 1-D Nanostructures Using a Novel Micromechanical Device. Experimental Mechanics, 2010, 50, 47-54.	2.0	56
149	Lightweight Hexagonal Boron Nitride Foam for CO ₂ Absorption. ACS Nano, 2017, 11, 8944-8952.	14.6	56
150	Leadâ€Free Double Perovskite Cs ₂ SnX ₆ : Facile Solution Synthesis and Excellent Stability. Small, 2019, 15, e1901650.	10.0	56
151	Spiral Growth of SnSe ₂ Crystals by Chemical Vapor Deposition. Advanced Materials Interfaces, 2016, 3, 1600383.	3.7	55
152	Opto-valleytronic imaging of atomically thin semiconductors. Nature Nanotechnology, 2017, 12, 329-334.	31.5	55
153	Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithiumâ€ion Batteries. Advanced Materials Interfaces, 2019, 6, 1901187.	3.7	54
154	Hierarchical Grapheneâ€Based Films with Dynamic Selfâ€Stiffening for Biomimetic Artificial Muscle. Advanced Functional Materials, 2016, 26, 7003-7010.	14.9	53
155	Sandwichâ€Like FeCl ₃ @C as Highâ€Performance Anode Materials for Potassiumâ€Ion Batteries. Advanced Materials Interfaces, 2018, 5, 1800606.	3.7	53
156	Toughening Graphene by Integrating Carbon Nanotubes. ACS Nano, 2018, 12, 7901-7910.	14.6	52
157	Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe ₂ Nanostructures. ACS Photonics, 2017, 4, 1653-1660.	6.6	51
158	Lateral Monolayer MoSe ₂ –WSe ₂ p–n Heterojunctions with Giant Builtâ€in Potentials. Small, 2020, 16, e2002263.	10.0	50
159	Spin Coherence and Dephasing of Localized Electrons in Monolayer MoS ₂ . Nano Letters, 2015, 15, 8250-8254.	9.1	49
160	Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures. Journal of Materials Research, 2003, 18, 719-728.	2.6	48
161	Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells. Journal of Materials Chemistry A, 2014, 2, 20902-20907.	10.3	47
162	A multiscale experiment on the tribological behavior of aligned carbon nanotube/ceramic composites. Scripta Materialia, 2008, 58, 223-226.	5.2	46

#	Article	IF	CITATIONS
163	Three-Dimensional Rebar Graphene. ACS Applied Materials & amp; Interfaces, 2017, 9, 7376-7384.	8.0	46
164	Quantitative in-situ nanomechanical characterization of metallic nanowires. Jom, 2011, 63, 35-42.	1.9	45
165	Anomalous high capacitance in a coaxial single nanowire capacitor. Nature Communications, 2012, 3, 879.	12.8	45
166	Role of Biochar in Improving Sandy Soil Water Retention and Resilience to Drought. Water (Switzerland), 2021, 13, 407.	2.7	44
167	Ternary Culn ₇ Se ₁₁ : Towards Ultraâ€Thin Layered Photodetectors and Photovoltaic Devices. Advanced Materials, 2014, 26, 7666-7672.	21.0	43
168	Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS ₂ devices. Nanotechnology, 2014, 25, 155702.	2.6	43
169	Water Molecule-Induced Stiffening in ZnO Nanobelts. Nano Letters, 2011, 11, 2845-2848.	9.1	42
170	Strain rate dependent mechanical properties in single crystal nickel nanowires. Applied Physics Letters, 2013, 102, .	3.3	42
171	Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution. Nanotechnology, 2016, 27, 364004.	2.6	42
172	Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule, 2021, 5, 1845-1859.	24.0	42
173	In situ mechanical investigation of carbon nanotube–graphene junction in three-dimensional carbon nanostructures. Nanoscale, 2017, 9, 2916-2924.	5.6	41
174	Highly Enhanced Photoluminescence of Monolayer MoS ₂ with Selfâ€Assembled Au Nanoparticle Arrays. Advanced Materials Interfaces, 2017, 4, 1700739.	3.7	41
175	Resonant surface plasmon–exciton interaction in hybrid MoSe ₂ @Au nanostructures. Nanoscale, 2016, 8, 8151-8159.	5.6	40
176	Room-Temperature Magnetic Order in Air-Stable Ultrathin Iron Oxide. Nano Letters, 2019, 19, 3777-3781.	9.1	40
177	Interphase Induced Dynamic Self‧tiffening in Grapheneâ€Based Polydimethylsiloxane Nanocomposites. Small, 2016, 12, 3723-3731.	10.0	39
178	Direct growth of MoS ₂ single crystals on polyimide substrates. 2D Materials, 2017, 4, 021028.	4.4	39
179	Quantum plasmonic control of trions in a picocavity with monolayer WS ₂ . Science Advances, 2019, 5, eaau8763.	10.3	39
180	Size dependent mechanical properties of single crystalline nickel nanowires. Journal of Applied Physics, 2012, 111, .	2.5	38

#	Article	IF	CITATIONS
181	Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2014, 118, 25863-25868.	3.1	38
182	Scalable Transfer of Suspended Two-Dimensional Single Crystals. Nano Letters, 2015, 15, 5089-5097.	9.1	38
183	Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. Journal of Electroanalytical Chemistry, 2019, 842, 74-81 Blueshift of the cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathMI "	3.8	38
184	display="inline"> <mml:mi>A</mml:mi> -exciton peak in folded monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mi>H</mml:mi></mml:mrow>-MoS<mr xmlns:mml="http://www.w3.org/1998/Math/MathMI" display="inline"><mml:msub><mml:mrow>-MoS<mr< td=""><td>nl3:2 nl:math</td><td>37</td></mr<></mml:mrow></mml:msub></mr </mml:math 	nl 3:2 nl:math	37
185	/> <mml:mn>2 </mml:mn> . Physical Review B, 2013, 88, . Ultra-Stiff Graphene Foams as Three-Dimensional Conductive Fillers for Epoxy Resin. ACS Nano, 2018, 12, 11219-11228.	14.6	37
186	Directional sensing based on flexible aligned carbon nanotube film nanocomposites. Nanoscale, 2018, 10, 14938-14946.	5.6	37
187	High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes. ACS Energy Letters, 2021, 6, 201-207.	17.4	37
188	In Situ Electro-Mechanical Experiments and Mechanics Modeling of Fracture in Indium Tin Oxide-Based Multilayer Electrodes. Advanced Engineering Materials, 2013, 15, 250-256.	3.5	36
189	Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites. Carbon, 2017, 115, 402-408.	10.3	36
190	Electrospinning fabrication and in situ mechanical investigation of individual graphene nanoribbon reinforced carbon nanofiber. Carbon, 2017, 114, 717-723.	10.3	36
191	A Low-Cost and High-Efficiency Integrated Device toward Solar-Driven Water Splitting. ACS Nano, 2020, 14, 5426-5434.	14.6	36
192	Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes. Scientific Reports, 2016, 6, 21601.	3.3	35
193	Near Degeneracy of Magnetic Phases in Two-Dimensional Chromium Telluride with Enhanced Perpendicular Magnetic Anisotropy. ACS Nano, 2020, 14, 15256-15266.	14.6	35
194	The Effect of VMoS3 Point Defect on the Elastic Properties of Monolayer MoS2 with REBO Potentials. Nanoscale Research Letters, 2016, 11, 155.	5.7	34
195	3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions. Nano Letters, 2015, 15, 5919-5925.	9.1	33
196	Thickness-Dependent and Magnetic-Field-Driven Suppression of Antiferromagnetic Order in Thin V ₅ S ₈ Single Crystals. ACS Nano, 2016, 10, 5941-5946.	14.6	33
197	Strain gradient plasticity length scale parameters for LIGA Ni MEMs thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 441, 299-307.	5.6	32
198	Title is missing!. Journal of Materials Science, 2003, 38, 4129-4135.	3.7	31

#	Article	IF	CITATIONS
199	Hydrogen Passivation Induced Dispersion of Multiâ€Walled Carbon Nanotubes. Advanced Materials, 2012, 24, 881-885.	21.0	31
200	Highly ordered hierarchical TiO ₂ nanotube arrays for flexible fiber-type dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 19841-19847.	10.3	31
201	Memristor goes two-dimensional. Nature Nanotechnology, 2015, 10, 389-390.	31.5	31
202	Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio. Scientific Reports, 2016, 6, 32989.	3.3	31
203	Quantum plasmonic hot-electron injection in lateral WSe2/MoSe2 heterostructures. Physical Review B, 2018, 98, .	3.2	31
204	A map of competing buckling-driven failure modes of substrate-supported thin brittle films. Thin Solid Films, 2012, 520, 6576-6580.	1.8	30
205	Effect of surface energy on size-dependent deformation twinning of defect-free Au nanowires. Nanoscale, 2015, 7, 15657-15664.	5.6	30
206	Nature Inspired Strategy to Enhance Mechanical Properties via Liquid Reinforcement. Advanced Materials Interfaces, 2017, 4, 1700240.	3.7	30
207	Atomic Layered Titanium Sulfide Quantum Dots as Electrocatalysts for Enhanced Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1700895.	3.7	30
208	Ultrafast probes of electron–hole transitions between two atomic layers. Nature Communications, 2018, 9, 1859.	12.8	30
209	Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys. Advanced Materials, 2018, 30, e1804218.	21.0	29
210	Mesoporous Mn2O3 rods as a highly efficient catalyst for Li-O2 battery. Journal of Power Sources, 2019, 435, 226833.	7.8	29
211	Universal ac conduction in large area atomic layers of CVD-grown MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2014, 89, .</mml:math 	3.2	27
212	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie - International Edition, 2016, 55, 10656-10661.	13.8	27
213	Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells. Materials and Design, 2016, 92, 462-470.	7.0	27
214	High stiffness polymer composite with tunable transparency. Materials Today, 2018, 21, 475-482.	14.2	27
215	Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Research, 2020, 13, 2356-2364.	10.4	27
216	Biomolecular sensing by surface-enhanced Raman scattering of monolayer Janus transition metal dichalcogenide. Nanoscale, 2020, 12, 10723-10729.	5.6	27

#	Article	IF	CITATIONS
217	An investigation of fatigue crack growth in a cast lamellar Tiî—,48Alî—,2Crî—,2Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 284, 235-245.	5.6	26
218	Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22756.	6.7	26
219	Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	26
220	High-performing and stable electricity generation by ceramic fuel cells operating in dry methane over 1000 hours. Journal of Power Sources, 2018, 401, 322-328.	7.8	25
221	Enhanced heterogeneous activation of peroxydisulfate by S, N co-doped graphene via controlling S, N functionalization for the catalytic decolorization of dyes in water. Chemosphere, 2018, 210, 120-128.	8.2	25
222	Underwater adhesive using solid–liquid polymer mixes. Materials Today Chemistry, 2018, 9, 149-157.	3.5	25
223	"Ductile―Fracture of Metallic Glass Nanolaminates. Advanced Materials Interfaces, 2017, 4, 1700510.	3.7	24
224	Synthesis of the hybrid CdS/Au flower-like nanomaterials and their SERS application. Sensors and Actuators B: Chemical, 2020, 304, 127218.	7.8	24
225	Uncovering topographically hidden features in 2D MoSe2 with correlated potential and optical nanoprobes. Npj 2D Materials and Applications, 2020, 4, .	7.9	24
226	Synthesis and tailored properties of covalent organic framework thin films and heterostructures. Materials Today, 2021, 51, 427-448.	14.2	24
227	Spatially-Resolved Photoluminescence of Monolayer MoS ₂ under Controlled Environment for Ambient Optoelectronic Applications. ACS Applied Nano Materials, 2018, 1, 6226-6235.	5.0	23
228	High performance hierarchically nanostructured graphene oxide/covalent organic framework hybrid membranes for stable organic solvent nanofiltration. Applied Materials Today, 2020, 20, 100791.	4.3	23
229	Strong and flaw-insensitive two-dimensional covalent organic frameworks. Matter, 2021, 4, 1017-1028.	10.0	23
230	Indentation Size Effects in the Nano and Microhardness of FCC Single Crystal Metals. Materials and Manufacturing Processes, 2007, 22, 228-237.	4.7	22
231	Quantitative In Situ Mechanical Characterization of the Effects of Chemical Functionalization on Individual Carbon Nanofibers. Advanced Functional Materials, 2012, 22, 4070-4077.	14.9	22
232	Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon, 2016, 110, 27-33.	10.3	22
233	Aligned-SWCNT film laminated nanocomposites: Role of the film on mechanical and electrical properties. Carbon, 2018, 139, 680-687.	10.3	22
234	Enhanced plant antioxidant capacity and biodegradation of phenol by immobilizing peroxidase on amphoteric nitrogen-doped carbon dots. Catalysis Communications, 2020, 134, 105847.	3.3	22

#	Article	IF	CITATIONS
235	Quantification and promotion of interfacial interactions between carbon nanotubes and polymer derived ceramics. Carbon, 2015, 95, 964-971.	10.3	21
236	Excitonic Resonant Emission–Absorption of Surface Plasmons in Transition Metal Dichalcogenides for Chip-Level Electronic–Photonic Integrated Circuits. ACS Photonics, 2016, 3, 869-874.	6.6	21
237	Direct Assessment of the Toxicity of Molybdenum Disulfide Atomically Thin Film and Microparticles via Cytotoxicity and Patch Testing. Small, 2018, 14, e1702600.	10.0	21
238	High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30793-30800.	8.0	21
239	Enhanced bioaccumulation efficiency and tolerance for Cd (â¡) in Arabidopsis thaliana by amphoteric nitrogen-doped carbon dots. Ecotoxicology and Environmental Safety, 2020, 190, 110108.	6.0	21
240	A nano-indentation study on the plasticity length scale effects in LIGA Ni MEMS structures. Journal of Materials Science, 2003, 38, 4137-4143.	3.7	20
241	On-chip lithium cells for electrical and structural characterization of single nanowire electrodes. Nanotechnology, 2014, 25, 265402.	2.6	20
242	Carbon Nanotube Pullout, Interfacial Properties, and Toughening in Ceramic Nanocomposites: Mechanistic Insights from Single Fiber Pullout Analysis. Advanced Materials Interfaces, 2015, 2, 1400110.	3.7	20
243	Unveil the Sizeâ€Đependent Mechanical Behaviors of Individual CNT/SiC Composite Nanofibers by In Situ Tensile Tests in SEM. Small, 2016, 12, 4486-4491.	10.0	20
244	High Toughness in Ultralow Density Graphene Oxide Foam. Advanced Materials Interfaces, 2017, 4, 1700030.	3.7	20
245	Chemically interconnected light-weight 3D-carbon nanotube solid network. Carbon, 2017, 119, 142-149.	10.3	20
246	Enhanced Cycling Performance of Li–O ₂ Battery by Using a Li ₃ PO ₄ -Protected Lithium Anode in DMSO-Based Electrolyte. ACS Applied Energy Materials, 2018, 1, 5511-5517.	5.1	20
247	Mechanical testing of two-dimensional materials: a brief review. International Journal of Smart and Nano Materials, 2020, 11, 207-246.	4.2	20
248	Surface enhanced resonant Raman scattering in hybrid MoSe ₂ @Au nanostructures. Optics Express, 2018, 26, 29411.	3.4	20
249	Friction and adhesion properties of vertically aligned multi-walled carbon nanotube arrays and fluoro-nanodiamond films. Carbon, 2008, 46, 1294-1301.	10.3	19
250	The Drosophila Transcription Factor Ultrabithorax Self-Assembles into Protein-Based Biomaterials with Multiple Morphologies. Biomacromolecules, 2009, 10, 829-837.	5.4	19
251	Mechanically Assisted Selfâ€Healing of Ultrathin Gold Nanowires. Small, 2018, 14, 1704085.	10.0	19
252	Near-Field Coupled Integrable Two-Dimensional InSe Photosensor on Optical Fiber. ACS Nano, 2018, 12, 12571-12577.	14.6	19

#	Article	IF	CITATIONS
253	Perovskiteâ€Đerivative Valleytronics. Advanced Materials, 2020, 32, e2004111.	21.0	19
254	Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors. Science China Materials, 2021, 64, 2439-2453.	6.3	19
255	Nanoscale Friction Dynamic Modeling. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2009, 131, .	1.6	18
256	Solvothermal synthesis and mechanical characterization of single crystalline copper nanorings. Journal of Crystal Growth, 2011, 325, 76-80.	1.5	18
257	Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 276, 325-332.	5.2	18
258	An investigation of the effects of loading rate on resistance-curve behavior and toughening in cast lamellar gamma-based titanium aluminides. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 325-337.	2.2	17
259	Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface. Journal of Applied Physics, 2014, 115, .	2.5	17
260	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie, 2016, 128, 10814-10819.	2.0	17
261	Quantitative in situ fracture testing of tin oxide nanowires for lithium ion battery applications. Nano Energy, 2018, 53, 277-285.	16.0	17
262	Remote Lightening and Ultrafast Transition: Intrinsic Modulation of Exciton Spatiotemporal Dynamics in Monolayer MoS ₂ . ACS Nano, 2020, 14, 6897-6905.	14.6	17
263	Approaching Carbon Nanotube Reinforcing Limit in B ₄ <scp>C</scp> Matrix Composites Produced by Chemical Vapor Infiltration. Advanced Engineering Materials, 2014, 16, 161-166.	3.5	16
264	Size Dictates Mechanical Properties for Protein Fibers Self-Assembled by the <i>Drosophila</i> Hox Transcription Factor Ultrabithorax. Biomacromolecules, 2010, 11, 3644-3651.	5.4	15
265	A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure. Journal of Applied Physics, 2014, 115, .	2.5	15
266	Nanoscale frictional characteristics of graphene nanoribbons. Applied Physics Letters, 2012, 101, 123104.	3.3	14
267	Modulating Particle Adhesion with Micro-patterned Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 8199-8207.	8.0	14
268	Growth of Molybdenum Carbide–Graphene Hybrids from Molybdenum Disulfide Atomic Layer Template. Advanced Materials Interfaces, 2017, 4, 1600866.	3.7	14
269	Role of Atomic Layer Functionalization in Building Scalable Bottom-Up Assembly of Ultra-Low Density Multifunctional Three-Dimensional Nanostructures. ACS Nano, 2017, 11, 806-813.	14.6	14
270	A Cyclic Microbend Study on LIGA Ni Microelectromechanical Systems Thin Films. Journal of Engineering Materials and Technology, Transactions of the ASME, 2005, 127, 16-22.	1.4	13

#	Article	IF	CITATIONS
271	Optimal structuring of nitrogen-doped hybrid-dimensional nanocarbons for high-performance flexible solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 7501-7515.	10.3	13
272	High-K dielectric sulfur-selenium alloys. Science Advances, 2019, 5, eaau9785.	10.3	13
273	Regular and reverse nanoscale stick-slip behavior: Modeling and experiments. Applied Surface Science, 2010, 256, 2577-2582.	6.1	12
274	Towards methyl orange degradation by direct sunlight using coupled TiO2 nanoparticles and carbonized cotton T-shirt. Applied Materials Today, 2016, 3, 57-62.	4.3	12
275	<i>Boxception</i> : Impact Resistance Structure Using 3D Printing. Advanced Engineering Materials, 2019, 21, 1900167.	3.5	12
276	Mechanical Anisotropy in Two-Dimensional Selenium Atomic Layers. Nano Letters, 2021, 21, 8043-8050.	9.1	12
277	Effects of temperature on the fatigue crack growth behavior of cast gamma-based titanium aluminides. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2781-2794.	2.2	11
278	Effects of interfaces on nano-friction of vertically aligned multi-walled carbon nanotube arrays. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 664-667.	5.6	11
279	The impact of core-shell nanotube structures on fracture in ceramic nanocomposites. Acta Materialia, 2017, 122, 82-91.	7.9	11
280	Probing the Effect of Chemical Dopant Phase on Photoluminescence of Monolayer MoS ₂ Using in Situ Raman Microspectroscopy. Journal of Physical Chemistry C, 2019, 123, 15738-15743.	3.1	11
281	Plasmon damping and charge transfer pathways in Au@MoSe2 nanostructures. Materials Today Nano, 2021, 15, 100131.	4.6	11
282	Fatigue of LIGA Ni Micro-Electro-Mechanical System Thin Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2340-2348.	2.2	10
283	Controllable high-throughput fabrication of porous gold nanorods driven by Rayleigh instability. RSC Advances, 2016, 6, 66484-66489.	3.6	10
284	Synergetic photoluminescence enhancement of monolayer MoS ₂ <i>via</i> surface plasmon resonance and defect repair. RSC Advances, 2018, 8, 23591-23598.	3.6	10
285	Plasmonic-Induced Luminescence of MoSe ₂ Monolayers in a Scanning Tunneling Microscope. ACS Photonics, 2020, 7, 3061-3070.	6.6	10
286	A probabilistic framework for the modeling of fatigue in cast lamellar gamma-based titanium aluminides. Mechanics of Materials, 2004, 36, 177-197.	3.2	9
287	Humidity Effects on Anisotropic Nanofriction Behaviors of Aligned Carbon Nanotube Carpets. ACS Applied Materials & amp; Interfaces, 2013, 5, 9501-9507.	8.0	9
288	Interconnecting Bone Nanoparticles by Ovalbumin Molecules to Build a Three-Dimensional Low-Density and Tough Material. ACS Applied Materials & Interfaces, 2018, 10, 41757-41762.	8.0	9

#	Article	IF	CITATIONS
289	CVD growth of high-quality and large-area continuous h-BN thin films directly on stainless-steel as protective coatings. Materials Today Nano, 2021, 16, 100135.	4.6	9
290	An investigation of the effects of temperature on fatigue crack growth in a cast lamellar Ti–45Al–2Mn–2Nb+0.8 vol.% TiB2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 618-624.	5.6	8
291	The mechanical characterization of carbon-nanotube-reinforced polymer-matrix nanocomposites: An unfolding story of interface. Jom, 2009, 61, 32-37.	1.9	8
292	The Effect of Protein Fusions on the Production and Mechanical Properties of Proteinâ€Based Materials. Advanced Functional Materials, 2015, 25, 1442-1450.	14.9	8
293	Structural Reinforcement through Liquid Encapsulation. Advanced Materials Interfaces, 2017, 4, 1600781.	3.7	8
294	Self‣tiffening Behavior of Reinforced Carbon Nanotubes Spheres. Advanced Engineering Materials, 2017, 19, 1600756.	3.5	8
295	Characterization of tin(II) sulfide defects/vacancies and correlation with their photocurrent. Nano Research, 2017, 10, 218-228.	10.4	8
296	â€~Unzipping' of twin lamella in nanotwinned nickel nanowires under flexural bending. Materials Research Letters, 2018, 6, 13-21.	8.7	8
297	Spontaneous Emission of Plasmonâ€Exciton Polaritons Revealed by Ultrafast Nonradiative Decays. Laser and Photonics Reviews, 2020, 14, 2000233.	8.7	8
298	A probabilistic framework for the modeling of fatigue in a lamellar XDTM gamma titanium aluminide alloy. International Journal of Fatigue, 2002, 24, 69-81.	5.7	7
299	Direct nanoimprinting of single crystalline gold: Experiments and dislocation dynamics simulations. Applied Surface Science, 2014, 290, 301-307.	6.1	7
300	Enhancing Mechanical Properties of Nanocomposites Using Interconnected Carbon Nanotubes (<i>i</i> CNT) as Reinforcement. Advanced Engineering Materials, 2017, 19, 1600499.	3.5	7
301	Poly-albumen: Bio-derived structural polymer from polymerized egg white. Materials Today Chemistry, 2018, 9, 73-79.	3.5	7
302	Strong Edge Stress in Molecularly Thin Organic–Inorganic Hybrid Ruddlesden–Popper Perovskites and Modulations of Their Edge Electronic Properties. ACS Nano, 2022, 16, 261-270.	14.6	7
303	Ductile layer toughening of brittle intermetallic composites. Journal of Materials Science, 2002, 37, 3023-3034.	3.7	6
304	Correlation between Droplet-Induced Strain Actuation and Voltage Generation in Single-Wall Carbon Nanotube Films. Nano Letters, 2011, 11, 5117-5122.	9.1	6
305	Yield strength dependence on strain rate of molybdenum-alloy nanofibers. Applied Physics Letters, 2014, 104, 251909.	3.3	6
306	Solid–Liquid Self-Adaptive Polymeric Composite. ACS Applied Materials & Interfaces, 2016, 8, 2142-2147.	8.0	6

#	Article	IF	CITATIONS
307	Elastic and â€~transparent bone' as an electrochemical separator. Materials Today Chemistry, 2019, 12, 132-138.	3.5	6
308	Mesoscale reverse stick-slip nanofriction behavior of vertically aligned multiwalled carbon nanotube superlattices. Applied Physics Letters, 2008, 92, 203115.	3.3	5
309	Achieving Selfâ€Stiffening and Laser Healing by Interconnecting Graphene Oxide Sheets with Amineâ€Functionalized Ovalbumin. Advanced Materials Interfaces, 2018, 5, 1800932.	3.7	5
310	Ultrahighly Enhanced Performance of Single Cadmium Selenide Nanobelt by Plasmonic Gold Particles. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900454.	1.8	5
311	Strengthening the interface between individual aramid fibers and polymer at room and elevated temperatures. Materials Today Communications, 2020, 24, 101254.	1.9	5
312	A Molecularâ€Level Interface Design Enabled Highâ€Strength and Highâ€Toughness Carbon Nanotube Buckypaper. Macromolecular Materials and Engineering, 2021, 306, 2100244.	3.6	5
313	Pathways of Exciton Triggered Hotâ€Carrier Injection at Plasmonic Metalâ^'Transition Metal Dichalcogenide Interface. Advanced Optical Materials, 2022, 10, 2100070.	7.3	5
314	An investigation of the effects of mix strength on the fracture and fatigue behavior of concrete mortar. Journal of Materials Science, 2006, 41, 6973-6977.	3.7	4
315	Understanding Li-ion battery processes at the atomic- to nano-scale. , 2010, , .		4
316	Mechanically robust Si nanorod arrays on Cu/Ti bilayer film coated Si substrate for high performance lithium-ion battery anodes. Journal of Applied Physics, 2012, 112, .	2.5	4
317	Enabling Ultrasensitive Photo-detection Through Control of Interface Properties in Molybdenum Disulfide Atomic Layers. Scientific Reports, 2016, 6, 39465.	3.3	4
318	Two dimensional heterostructure: perfect platform for exploring interface interaction. Science Bulletin, 2017, 62, 381-382.	9.0	4
319	Quantification of Electron Beam Heating Effect in TEM. Microscopy and Microanalysis, 2017, 23, 1766-1767.	0.4	4
320	Plasticity Length Scale in LIGA Nickel MEMS Structures. Materials Research Society Symposia Proceedings, 2001, 687, 1.	0.1	3
321	Nanomechanics and Nanostructured Multifunctional Materials: Experiments, Theories, and Simulations. Journal of Nanomaterials, 2008, 2008, 1-1.	2.7	3
322	Dislocation Nucleation and Pileup under a Wedge Contact at Nanoscale. Journal of Nanomaterials, 2008, 2008, 1-5.	2.7	3
323	New paradigm in advanced composite and nanocomposite design. Reinforced Plastics, 2018, 62, 263-265.	0.1	3
324	Strain-controlled optical transmittance tuning of three-dimensional carbon nanotube architectures. Journal of Materials Chemistry C, 2019, 7, 1927-1933.	5.5	3

#	Article	IF	CITATIONS
325	Tunable friction of monolayer MoS2 by control of interfacial chemistry. Extreme Mechanics Letters, 2020, 41, 100996.	4.1	3
326	Hydrogen bonding sewing interface. RSC Advances, 2020, 10, 17438-17443.	3.6	3
327	Ultrafast Pump–Probe Microscopy on 2D Transition Metal Dichalcogenides. Advanced Photonics Research, 2022, 3, .	3.6	3
328	An investigation of fracture initiation and resistance-curve behavior in concrete. Cement and Concrete Composites, 2003, 25, 599-605.	10.7	2
329	In situ electrical property characterization of individual nanostructures using a sliding probe inside a transmission electron microscope. , 2010, , .		2
330	Dual-gate MOSFETs on monolayer CVD MoS2 films. , 2013, , .		2
331	Integration of contact size dependence and thermal activation in atomic friction. Extreme Mechanics Letters, 2015, 2, 60-64.	4.1	2
332	Mechanical Properties of Ultralow Density Graphene Oxide/Polydimethylsiloxane Foams. MRS Advances, 2018, 3, 61-66.	0.9	2
333	Quaternary Alloys: Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870344.	21.0	2
334	Thermoelectric measurements of high-resistance Janus monolayer transition-metal dichalcogenide. Review of Scientific Instruments, 2019, 90, 105110.	1.3	2
335	Leadâ€Free Perovskites: Leadâ€Free Double Perovskite Cs ₂ SnX ₆ : Facile Solution Synthesis and Excellent Stability (Small 39/2019). Small, 2019, 15, 1970211.	10.0	2
336	Quantitative in-situ study of strength-governed interfacial failure between h-BN and polymer-derived ceramic. Acta Materialia, 2021, 210, 116832.	7.9	2
337	Minimizing the Water Effect in Synthesis of High-Quality Monolayer MoS ₂ Nanosheets: Implications for Electronic and Optoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 8094-8100.	5.0	2
338	Gold Nanorods. , 2015, , 1-9.		2
339	Size and Crystal Orientation-Dependent Thermal Behaviors of ZnO Nanobelts. Journal of Physical Chemistry C, 2020, 124, 27222-27229.	3.1	2
340	An Investigation of The Effects of Temperature on Fatigue Crack Growth Behavior of a Cast Nearly Lamellar Ti-47A1–2Cr-2Mn + 0.8 Vol. %TiB2 Gamma Titanium Alloy. Materials Research Society Symposia Proceedings, 2000, 646, 143.	0.1	2
341	Bilinear Behavior in the Indentation Size Effect: A Consequence of Strain Gradient Plasticity. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	1
342	In Situ Mechanical Characterization of One Dimensional Nanoscale Building Blocks Using Novel Microfabricated Devices. , 2008, , .		1

	Jun Lou		
#	Article	IF	CITATIONS
343	Effect of Sidewall Fluorination on the Mechanical Properties of Catalytically Grown Multi-Wall Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2011, 1284, 157.	0.1	1
344	Localized Quantitative Characterization of Chemical Functionalization Effects on Adhesion Properties of SWNT. Journal of Nanomaterials, 2011, 2011, 1-5.	2.7	1
345	Carbon Nanotubes: Hydrogen Passivation Induced Dispersion of Multi-Walled Carbon Nanotubes (Adv.) Tj ETQq1	1 0.7843 21.0	14 rgBT /Ov
346	Probing interface strength in nanocomposites and hybrid nanomaterials. , 2021, , 209-240.		1
347	Unconventional optical properties of 2D janus SMoSe induced by structural asymmetry. 2D Materials, 0, , .	4.4	1
348	Investigation of the Bi-linear Behavior of the Indentation Size Effects in Single and Polycrystalline Ni Thin Films/MEMS Thin Films. Materials Research Society Symposia Proceedings, 2006, 976, 1.	0.1	0
349	Towards NEMS Fluid Sensors Based on Suspended Nanomaterials. Materials Research Society Symposia Proceedings, 2009, 1222, 1.	0.1	0
350	On-chip electrochemistry: A nanofabricated platform for single nanowire battery electrochemistry. , 2010, , .		0
351	Noncontact and contact micromanipulation using a rotating nickel nanowire. , 2010, , .		0
352	Synthesis, characterization and engineering of two-dimensional transition metal dichalcogenides. , 2014, , .		0
353	Quantification of Dopant Distribution and the Local Band Gap in Selenium-Doped Molybdenum Disulfide. Microscopy and Microanalysis, 2014, 20, 1754-1755.	0.4	0
354	Interfaces in Two-Dimensional Heterostructures of Transition Metal Dichalcogenides. Microscopy and Microanalysis, 2015, 21, 105-106.	0.4	0
355	Nanoantenna-enhanced light-matter interaction in atomically thin WS2. , 2015, , .		0
356	In-situ Thermal Testing on Nanostructures in TEM. Microscopy and Microanalysis, 2016, 22, 770-771.	0.4	0
357	Photoluminescence quenching in hybrid gold/MoSe ₂ nanosheets. , 2016, , .		0