Liming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2490155/publications.pdf

Version: 2024-02-01

		76326	79698
79	5,549	40	73
papers	citations	h-index	g-index
70	70	70	E 41 2
79	79	79	5413
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. Advanced Functional Materials, 2018, 28, 1705295.	14.9	370
2	Potential Difference Driving Electron Transfer <i>via</i> Defective Carbon Nanotubes toward Selective Oxidation of Organic Micropollutants. Environmental Science & Environmental Science & 2020, 54, 8464-8472.	10.0	288
3	Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number. Chemical Engineering Journal, 2019, 358, 321-330.	12.7	270
4	Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chemical Engineering Journal, 2013, 220, 98-106.	12.7	235
5	Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO ₂). Environmental Science & Technology, 2015, 49, 11115-11124.	10.0	233
6	Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 2019, 539, 223-234.	9.4	213
7	Thiol-Functionalized Zr-Based Metal–Organic Framework for Capture of Hg(II) through a Proton Exchange Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 8494-8502.	6.7	140
8	Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation. Chemical Engineering Journal, 2019, 359, 79-87.	12.7	136
9	Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol. Chemical Engineering Journal, 2019, 359, 894-901.	12.7	136
10	Recovery of Lithium from Wastewater Using Development of Li Ion-Imprinted Polymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 460-467.	6.7	133
11	Lattice-Defect-Enhanced Adsorption of Arsenic on Zirconia Nanospheres: A Combined Experimental and Theoretical Study. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29736-29745.	8.0	121
12	Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb(ii) ions in real environmental water samples. Journal of Materials Chemistry A, 2013, 1, 8280.	10.3	119
13	Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg 2+ from water. Journal of Hazardous Materials, 2016, 306, 313-322.	12.4	117
14	Palladium ion-imprinted polymers with PHEMA polymer brushes: Role of grafting polymerization degree in anti-interference. Chemical Engineering Journal, 2019, 359, 176-185.	12.7	114
15	Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: Quantitative comparison and mechanistic insight. Journal of Hazardous Materials, 2020, 387, 121676.	12.4	111
16	Novel Cu (II) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol–gel process. Journal of Hazardous Materials, 2011, 192, 949-955.	12.4	105
17	Magnetic ion-imprinted and –SH functionalized polymer for selective removal of Pb(II) from aqueous samples. Applied Surface Science, 2014, 292, 438-446.	6.1	104
18	Capturing Lithium from Wastewater Using a Fixed Bed Packed with 3-D MnO ₂ lon Cages. Environmental Science & Environ	10.0	102

#	Article	IF	CITATIONS
19	Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin \hat{l}_{\pm} -Fe 2 O 3 nanosheets with highly exposed (1 1 0) facets: A superior photocatalyst for degradation of bisphenol S. Chemical Engineering Journal, 2017, 323, 64-73.	12.7	100
20	Ag-bridged Ag2O nanowire network/TiO2 nanotube array p–n heterojunction as a highly efficient and stable visible light photocatalyst. Journal of Hazardous Materials, 2015, 285, 319-324.	12.4	98
21	Tannic acid-based adsorbent with superior selectivity for lead(II) capture: Adsorption site and selective mechanism. Chemical Engineering Journal, 2019, 364, 160-166.	12.7	93
22	One-step hydrothermal fabrication of visible-light-responsive AgInS2/SnIn4S8 heterojunction for highly-efficient photocatalytic treatment of organic pollutants and real pharmaceutical industry wastewater. Applied Catalysis B: Environmental, 2017, 219, 163-172.	20.2	84
23	Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosensors and Bioelectronics, 2019, 141, 111444.	10.1	81
24	Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends. Environment International, 2021, 152, 106512.	10.0	81
25	Selective Separation of Cu(II) from Aqueous Solution with a Novel Cu(II) Surface Magnetic lon-Imprinted Polymer. Industrial & Engineering Chemistry Research, 2011, 50, 6355-6361.	3.7	79
26	Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Research, 2019, 166, 115076.	11.3	79
27	Direct Z-scheme MoSe2 decorating TiO2 nanotube arrays photocatalyst for water decontamination. Electrochimica Acta, 2019, 298, 663-669.	5.2	71
28	Recovery of Silver from Wastewater Using a New Magnetic Photocatalytic Ion-Imprinted Polymer. ACS Sustainable Chemistry and Engineering, 2017, 5, 2090-2097.	6.7	70
29	Removal of Cadmium(II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers. Journal of Chemical & Chemi	1.9	66
30	Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force. Journal of Hazardous Materials, 2021, 403, 123705.	12.4	66
31	Protonation of rhodanine polymers for enhancing the capture and recovery of Ag ⁺ from highly acidic wastewater. Environmental Science: Nano, 2019, 6, 3307-3315.	4.3	62
32	Vertically oriented reduced graphene oxide supported dealloyed palladium–copper nanoparticles for methanol electrooxidation. Journal of Power Sources, 2015, 278, 725-732.	7.8	61
33	Polyaniline-Reduced Graphene Oxide Hybrid Nanosheets with Nearly Vertical Orientation Anchoring Palladium Nanoparticles for Highly Active and Stable Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 169-176.	8.0	61
34	Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorganic Chemistry Frontiers, 2022, 9, 1366-1372.	6.0	58
35	Optimization of adsorption configuration by DFT calculation for design of adsorbent: A case study of palladium ion-imprinted polymers. Journal of Hazardous Materials, 2019, 379, 120791.	12.4	57
36	Functionalization of UiO-66-NH2 with rhodanine via amidation: Towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chemical Engineering Journal, 2020, 382, 123009.	12.7	55

#	Article	IF	CITATIONS
37	A critical review of the recovery of rare earth elements from wastewater by algae for resources recycling technologies. Resources, Conservation and Recycling, 2021, 169, 105519.	10.8	54
38	Rationally designed conjugated microporous polymers for contaminants adsorption. Science of the Total Environment, 2021, 750, 141683.	8.0	45
39	Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H*. Journal of Hazardous Materials, 2018, 358, 294-301.	12.4	44
40	Facile preparation of a novel Hg(<scp>ii</scp>)-ion-imprinted polymer based on magnetic hybrids for rapid and highly selective removal of Hg(<scp>ii</scp>) from aqueous solutions. RSC Advances, 2016, 6, 14916-14926.	3.6	43
41	A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater. Journal of Environmental Chemical Engineering, 2016, 4, 2268-2277.	6.7	42
42	A novel non-imprinted adsorbent with superior selectivity towards high-performance capture of Ag(I). Chemical Engineering Journal, 2018, 348, 224-231.	12.7	41
43	Mesoporous TiO2 with WO3 functioning as dopant and light-sensitizer: A highly efficient photocatalyst for degradation of organic compound. Journal of Hazardous Materials, 2018, 358, 44-52.	12.4	41
44	Palladium Nanoparticles Supported on Vertically Oriented Reduced Graphene Oxide for Methanol Electroâ€Oxidation. ChemSusChem, 2014, 7, 2907-2913.	6.8	40
45	Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells. Applied Energy, 2018, 209, 56-64.	10.1	39
46	Efficient antimony removal by self-assembled core-shell nanocomposite of Co3O4@rGO and the analysis of its adsorption mechanism. Environmental Research, 2020, 187, 109657.	7.5	39
47	Enhanced photocatalytic activity of hierarchical titanium dioxide microspheres with combining carbon nanotubes as "e-bridge― Journal of Hazardous Materials, 2019, 367, 550-558.	12.4	38
48	Synthesis of magnetic ion-imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd(II) from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 186-193.	4.7	36
49	Hierarchical reduced graphene oxide supported dealloyed platinum–copper nanoparticles for highly efficient methanol electrooxidation. International Journal of Hydrogen Energy, 2017, 42, 6705-6712.	7.1	36
50	High exposure effect of the adsorption site significantly enhanced the adsorption capacity and removal rate: A case of adsorption of hexavalent chromium by quaternary ammonium polymers (QAPs). Journal of Hazardous Materials, 2021, 416, 125829.	12.4	36
51	A magnetic copper(II)-imprinted polymer for the selective enrichment of trace copper(II) ions in environmental water. Mikrochimica Acta, 2012, 179, 283-289.	5.0	35
52	New insight on the adsorption capacity of metallogels for antimonite and antimonate removal: From experimental to theoretical study. Journal of Hazardous Materials, 2018, 346, 218-225.	12.4	35
53	Progress toward Hydrogels in Removing Heavy Metals from Water: Problems and Solutions—A Review. ACS ES&T Water, 2021, 1, 1098-1116.	4.6	33
54	Threeâ€Dimensional Nitrogenâ€Doped Reduced Graphene Oxide–Carbon Nanotubes Architecture Supporting Ultrafine Palladium Nanoparticles for Highly Efficient Methanol Electrooxidation. Chemistry - A European Journal, 2015, 21, 16631-16638.	3.3	32

#	Article	IF	CITATIONS
55	Three-dimensional electrode interface assembled from rGO nanosheets and carbon nanotubes for highly electrocatalytic oxygen reduction. Chemical Engineering Journal, 2019, 378, 122127.	12.7	32
56	Au–Cu nanoalloy/TiO2/MoS2 ternary hybrid with enhanced photocatalytic hydrogen production. Journal of Alloys and Compounds, 2020, 820, 153440.	5.5	29
57	Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review. Science of the Total Environment, 2021, 778, 146301.	8.0	29
58	Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae. Journal of Hazardous Materials, 2022, 423, 127000.	12.4	28
59	One–step reductive synthesis of Ti3+ self–doped elongated anatase TiO2 nanowires combined with reduced graphene oxide for adsorbing and degrading waste engine oil. Journal of Hazardous Materials, 2019, 378, 120752.	12.4	27
60	Selective removal and recovery of La(III) using a phosphonic-based ion imprinted polymer: Adsorption performance, regeneration, and mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 106701.	6.7	26
61	PtRu nanoalloys loaded on graphene and TiO2 nanotubes co-modified Ti wire as an active and stable methanol oxidation electrocatalyst. International Journal of Hydrogen Energy, 2018, 43, 7338-7346.	7.1	23
62	A novel collector with wide pH adaptability and high selectivity towards flotation separation of scheelite from calcite. Minerals Engineering, 2020, 158, 106606.	4.3	22
63	Hydroxypropyl amine surfactant: A novel flotation collector for efficient separation of scheelite from calcite. Minerals Engineering, 2021, 167, 106898.	4.3	22
64	Insights into ion imprinted membrane with a delayed permeation mechanism for enhancing Cd2+ selective separation. Journal of Hazardous Materials, 2021, 416, 125772.	12.4	20
65	Corrected response surface methodology for microalgae towards optimized ammonia nitrogen removal: A case of rare earth mining tallings wastewater in Southern Jiangxi, China. Journal of Cleaner Production, 2022, 343, 130998.	9.3	20
66	Au Cu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 15155-15163.	7.1	19
67	Electrodeposited graphene hybridized graphitic carbon nitride anchoring ultrafine palladium nanoparticles for remarkable methanol electrooxidation. International Journal of Hydrogen Energy, 2020, 45, 21483-21492.	7.1	19
68	Enhancing nitrate removal from wastewater by integrating heterotrophic and autotrophic denitrification coupled manganese oxidation process (IHAD-MnO): Internal carbon utilization performance. Environmental Research, 2021, 194, 110744.	7.5	19
69	Weak electric field enabling enhanced selectivity of tannic acid-graphene aerogels for Pb2+ harvesting from wastewater. Chemical Engineering Journal, 2021, 416, 129144.	12.7	19
70	Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. Science of the Total Environment, 2021, 786, 147430.	8.0	19
71	Tuning the Sb(V) adsorption performance of La-MOFs via ligand engineering effect: Combined experiments with theoretical calculations. Chemical Engineering Journal, 2022, 435, 134874.	12.7	19
72	Titanium dioxide nano-heterostructure with nanoparticles decorating nanowires for high-performance photocatalysis. International Journal of Hydrogen Energy, 2018, 43, 10359-10367.	7.1	18

#	Article	IF	CITATION
73	An ion-imprinted polymer based on the novel functional monomer for selective removal of Ni(II) from aqueous solution. Journal of Environmental Chemical Engineering, 2016, 4, 4776-4785.	6.7	15
74	Specific spatial transfer PdCl42â^' to [X-Pd-Y] by strong coordination interaction in a 3D palladium ion-imprinted polymer with footprint cavity. Chemical Engineering Journal, 2021, 405, 126613.	12.7	11
75	Tandem type PRBs-like technology implanted with targeted functional materials for efficient resourceful treatment of heavy metal ions from mining wastewater. Chemical Engineering Journal, 2021, 420, 130506.	12.7	9
76	Capturing Cadmium(II) Ion from Wastewater Containing Solid Particles and Floccules Using Ion-Imprinted Polymers with Broom Effect. Industrial & Engineering Chemistry Research, 2017, 56, 2350-2358.	3.7	7
77	Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis. Environmental Research, 2020, 191, 110212.	7.5	7
78	An all-in-one photocatalyst: Photocatalytic reduction of Cr(VI) and anchored adsorption of Cr(III) over mesoporous titanium@sulfonated carbon hollow hemispheres. Journal of Environmental Chemical Engineering, 2022, 10, 107864.	6.7	7
79	Perfluorinated conjugated microporous polymer for targeted capture of Ag(I) from contaminated water. Environmental Research, 2022, 211, 113007.	7.5	5