Virginia Ruizâ€Villanueva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2488768/publications.pdf

Version: 2024-02-01

71 papers

2,332 citations

28 h-index 233421 45 g-index

81 all docs 81 docs citations

81 times ranked 1528 citing authors

#	Article	IF	CITATIONS
1	Physical modelling of large wood (LW) processes relevant for river management: Perspectives from New Zealand and Switzerland. Earth Surface Processes and Landforms, 2022, 47, 32-57.	2.5	14
2	Reflections on the history of research on large wood in rivers. Earth Surface Processes and Landforms, 2021, 46, 55-66.	2.5	30
3	Wood Retention at Inclined Bar Screens: Effect of Wood Characteristics on Backwater Rise and Bedload Transport. Water (Switzerland), 2021, 13, 2231.	2.7	4
4	Perspectives on being a fieldâ€based geomorphologist during pregnancy and early motherhood. Earth Surface Processes and Landforms, 2021, 46, 2767-2772.	2.5	8
5	Evaluating river driftwood as a feedstock for biochar production. Waste Management, 2021, 134, 197-205.	7.4	4
6	River driftwood pretreated via hydrothermal carbonization as a sustainable source of hard carbon for Na-ion battery anodes. Journal of Environmental Chemical Engineering, 2021, 9, 106604.	6.7	15
7	Remotely sensed rivers in the Anthropocene: state of the art and prospects. Earth Surface Processes and Landforms, 2020, 45, 157-188.	2.5	128
8	Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater. Science of the Total Environment, 2020, 744, 140555.	8.0	28
9	Fluvial transport of coarse particulate organic matter in a coastal mountain stream of a rainyâ€ŧemperate evergreen broadleaf forest in southern Chile. Earth Surface Processes and Landforms, 2020, 45, 3216-3230.	2.5	7
10	Unravelling the impacts to the built environment caused by floods in a river heavily perturbed by volcanic eruptions. Journal of South American Earth Sciences, 2020, 102, 102655.	1.4	11
11	Numerical Modeling of Instream Wood Transport, Deposition, and Accumulation in Braided Morphologies Under Unsteady Conditions: Sensitivity and Highâ€Resolution Quantitative Model Validation. Water Resources Research, 2020, 56, e2019WR026221.	4.2	19
12	Bridge pier shape influence on wood accumulation: Outcomes from flume experiments and numerical modelling. Journal of Flood Risk Management, 2020, 13, e12599.	3.3	18
13	Quantification of fluvial wood using UAVs and structure from motion. Geomorphology, 2019, 345, 106837.	2.6	34
14	Anticipating cascading effects of extreme precipitation with pathway schemes - Three case studies from Europe. Environment International, 2019, 127, 291-304.	10.0	21
15	The Natural Wood Regime in Rivers. BioScience, 2019, 69, 259-273.	4.9	121
16	Characterization of woodâ€laden flows in rivers. Earth Surface Processes and Landforms, 2019, 44, 1694-1709.	2.5	72
17	Cascading processes in a changing environment: Disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 2019, 655, 1089-1103.	8.0	34
18	Does the public's negative perception towards wood in rivers relate to recent impact of flooding experiencing?. Science of the Total Environment, 2018, 635, 294-307.	8.0	15

#	Article	IF	CITATIONS
19	Debris flows triggered from non-stationary glacier lake outbursts: the case of the Teztor Lake complex (Northern Tian Shan, Kyrgyzstan). Landslides, 2018, 15, 83-98.	5.4	24
20	Assessing and mitigating large woodâ€related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 2018, 11, 207-222.	3.3	55
21	Impacts of a large flood along a mountain river basin: the importance of channel widening and estimating the large wood budget in the upper Emme River (Switzerland). Earth Surface Dynamics, 2018, 6, 1115-1137.	2.4	33
22	Defining and characterizing wood-laden flows in rivers using home videos. E3S Web of Conferences, 2018, 40, 02014.	0.5	3
23	Geomorphic and stream flow influences on large wood dynamics and displacement lengths in high gradient mountain streams (<scp>C</scp> hile). Hydrological Processes, 2018, 32, 2636-2653.	2.6	13
24	Characteristics and abundance of large and small instream wood in a Carpathian mixed-forest headwater basin. Forest Ecology and Management, 2018, 424, 468-482.	3. 2	15
25	Inâ€channel woodâ€related hazards at bridges: <scp>A</scp> review. River Research and Applications, 2018, 34, 617-628.	1.7	46
26	Temporal dynamics of instream wood in headwater streams draining mixed Carpathian forests. Geomorphology, 2017, 292, 35-46.	2.6	16
27	Glacial lake inventory and lake outburst potential in Uzbekistan. Science of the Total Environment, 2017, 592, 228-242.	8.0	41
28	Large wood clogging during floods in a gravelâ€bed river: the DÅ,ugopole bridge in the Czarny Dunajec River, Poland. Earth Surface Processes and Landforms, 2017, 42, 516-530.	2.5	33
29	Frederick J. Swanson's 1976–1979 papers on the effects of instream wood on fluvial processes and instream wood management. Progress in Physical Geography, 2017, 41, 124-133.	3.2	4
30	Breakdown of instream wood in low order forested streams of the Southern Chilean mountain ranges. Forest Ecology and Management, 2017, 401, 17-32.	3. 2	9
31	Changes of flood risk on the northern foothills of the Tatra Mountains. Acta Geophysica, 2017, 65, 799-807.	2.0	13
32	Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 2017, 41, 3-28.	3.2	54
33	Log transport and deposition in incised, channelized, and multithread reaches of a wide mountain river: Tracking experiment during a 20-year flood. Geomorphology, 2017, 279, 98-111.	2.6	30
34	Brief communication: The curious case of the large wood-laden flow event in the Pocuro stream (Chile). Natural Hazards and Earth System Sciences, 2017, 17, 2053-2058.	3.6	16
35	Exploring large wood retention and deposition in contrasting river morphologies linking numerical modelling and field observations. Earth Surface Processes and Landforms, 2016, 41, 446-459.	2.5	41
36	Floods in Mountain Basins. GeoPlanet: Earth and Planetary Sciences, 2016, , 23-37.	0.2	8

#	Article	IF	CITATIONS
37	Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics, 2016, 54, 611-652.	23.0	169
38	Flood Generation Mechanisms and Changes in Principal Drivers. GeoPlanet: Earth and Planetary Sciences, 2016, , 55-75.	0.2	9
39	Methods to Assess Large Wood Dynamics and the Associated Flood Hazard in Polish Carpathian Watercourses of Different Size. GeoPlanet: Earth and Planetary Sciences, 2016, , 77-101.	0.2	6
40	Large Wood Transport, Deposition and Remobilization during Floods in the Czarny Dunajec River: Outcomes from Numerical Modelling. GeoPlanet: Earth and Planetary Sciences, 2016, , 103-125.	0.2	4
41	The role of flood hydrograph in the remobilization of large wood in a wide mountain river. Journal of Hydrology, 2016, 541, 330-343.	5.4	37
42	Decadal variability of floods in the northern foreland of the Tatra Mountains. Regional Environmental Change, 2016, 16, 603-615.	2.9	28
43	Wood density and moisture sorption and its influence on large wood mobility in rivers. Catena, 2016, 140, 182-194.	5.0	41
44	Factors controlling large-wood transport in a mountain river. Geomorphology, 2016, 272, 21-31.	2.6	63
45	Variability of Flood Frequency and Magnitude During the Late 20th and Early 21st Centuries in the Northern Foreland of the Tatra Mountains. GeoPlanet: Earth and Planetary Sciences, 2016, , 231-256.	0.2	4
46	Projections of Precipitation in the Northern Foothills of the Tatra Mountains. GeoPlanet: Earth and Planetary Sciences, 2016, , 311-329.	0.2	1
47	Modelling Hydraulic Parameters of Flood Flows for a Polish Carpathian River Subjected to Variable Human Impacts. GeoPlanet: Earth and Planetary Sciences, 2016, , 127-151.	0.2	7
48	Observed Changes in AirÂTemperature and Precipitation and Relationship between them, in the Upper Vistula Basin. GeoPlanet: Earth and Planetary Sciences, 2016, , 155-187.	0.2	10
49	Large wood research in Swiss watercourses. , 2016, , .		6
50	Strategies in the 2D numerical modelling of wood transport in rivers. , 2016, , .		3
51	Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds – A review. Journal of Hydrology, 2015, 529, 449-467.	5.4	61
52	Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 2015, 15, 505-515.	2.9	25
53	Can tree tilting be used for paleoflood discharge estimations?. Journal of Hydrology, 2015, 529, 480-489.	5.4	28
54	Avances en el análisis del material leñoso en rÃos: incorporación, transporte e influencia en el riesgo por inundaciones. Cuaternario Y Geomorfologia, 2015, 29, 7-33.	0.2	1

#	Article	IF	Citations
55	Analysis of Wood Density to Improve Understanding of Wood Buoyancy in Rivers., 2015, , 163-166.		1
56	Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 2014, 16, 1077-1096.	2.4	105
57	Twoâ€dimensional modelling of large wood transport during flash floods. Earth Surface Processes and Landforms, 2014, 39, 438-449.	2.5	84
58	Floods at the northern foothills of the Tatra Mountains $\hat{a}\in$ " A Polish-Swiss research project. Acta Geophysica, 2014, 62, 620-641.	2.0	53
59	POTENTIAL LARGE WOODY DEBRIS RECRUITMENT DUE TO LANDSLIDES, BANK EROSION AND FLOODS IN MOUNTAIN BASINS: A QUANTITATIVE ESTIMATION APPROACH. River Research and Applications, 2014, 30, 81-97.	1.7	59
60	Large wood transport as significant influence on flood risk in a mountain village. Natural Hazards, 2014, 74, 967-987.	3.4	71
61	Wood density assessment to improve understanding of large wood buoyancy in rivers. , 2014, , 2503-2508.		3
62	Large wood in rivers and its influence on flood hazard. Cuadernos De Investigacion Geografica, 2014, 40, 229-246.	1.1	9
63	Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes, 2013, 27, 3424-3437.	2.6	68
64	Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena, 2013, 110, 32-43.	5.0	55
65	Dendrogeomorphology in badlands: Methods, case studies and prospects. Catena, 2013, 106, 113-122.	5.0	47
66	A review of dendrogeomorphological research applied to flood risk analysis in Spain. Geomorphology, 2013, 196, 211-220.	2.6	24
67	A new methodological protocol for the use of dendrogeomorphological data in flood risk analysis. Hydrology Research, 2013, 44, 234-247.	2.7	13
68	Extreme flood response to short-duration convective rainfall in South-West Germany. Hydrology and Earth System Sciences, 2012, 16, 1543-1559.	4.9	47
69	Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence?. Water Resources Research, 2011, 47, .	4.2	19
70	Triggering threshold precipitation and soil hydrological characteristics of shallow landslides in granitic landscapes. Geomorphology, 2011, 133, 178-189.	2.6	17
71	Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology, 2010, 118, 383-392.	2.6	106