Julian Aragones Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487406/publications.pdf

Version: 2024-02-01

49 papers

5,501 citations

30 h-index 197818 49 g-index

50 all docs 50 docs citations

50 times ranked

8862 citing authors

#	Article	IF	CITATIONS
1	Substrate Fate in Activated Macrophages: A Comparison between Innate, Classic, and Alternative Activation. Journal of Immunology, 2010, 185, 605-614.	0.8	820
2	Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization. Cell, 2009, 136, 839-851.	28.9	727
3	Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nature Genetics, 2008, 40, 170-180.	21.4	433
4	Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nature Reviews Drug Discovery, 2009, 8, 139-152.	46.4	302
5	Induction of the Mitochondrial NDUFA4L2 Protein by HIF-1α Decreases Oxygen Consumption by Inhibiting Complex I Activity. Cell Metabolism, 2011, 14, 768-779.	16.2	276
6	Oxygen Sensors at the Crossroad of Metabolism. Cell Metabolism, 2009, 9, 11-22.	16.2	251
7	Inhibition of Hypoxia Inducible Factor Hydroxylases Protects Against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 39-46.	6.1	246
8	Molecular Pathways: Hypoxia Response in Immune Cells Fighting or Promoting Cancer. Clinical Cancer Research, 2012, 18, 1207-1213.	7.0	182
9	Abnormal Sympathoadrenal Development and Systemic Hypotension in <i>PHD3</i> ^{<i>â^'</i>/i>/si>â^'/i>} Mice. Molecular and Cellular Biology, 2008, 28, 3386-3400.	2.3	176
10	Genetic evidence for a tumor suppressor role of HIF-2α. Cancer Cell, 2005, 8, 131-141.	16.8	174
11	HIF2α Acts as an mTORC1 Activator through the Amino Acid Carrier SLC7A5. Molecular Cell, 2012, 48, 681-691.	9.7	170
12	The HIF- $1\hat{l}\pm$ Hypoxia Response in Tumor-Infiltrating T Lymphocytes Induces Functional CD137 (4-1BB) for Immunotherapy. Cancer Discovery, 2012, 2, 608-623.	9.4	156
13	c-Jun and Hypoxia-Inducible Factor 1 Functionally Cooperate in Hypoxia-Induced Gene Transcription. Molecular and Cellular Biology, 2002, 22, 12-22.	2.3	109
14	Loss or Silencing of the PHD1 Prolyl Hydroxylase Protects Livers of Mice Against Ischemia/Reperfusion Injury. Gastroenterology, 2010, 138, 1143-1154.e2.	1.3	108
15	Lack of Evidence for the Involvement of the Phosphoinositide 3-Kinase/Akt Pathway in the Activation of Hypoxia-inducible Factors by Low Oxygen Tension. Journal of Biological Chemistry, 2002, 277, 13508-13517.	3.4	103
16	Evidence for the Involvement of Diacylglycerol Kinase in the Activation of Hypoxia-inducible Transcription Factor 1 by Low Oxygen Tension. Journal of Biological Chemistry, 2001, 276, 10548-10555.	3.4	101
17	Macrophage Oxygen Sensing Modulates Antigen Presentation and Phagocytic Functions Involving IFN- \hat{l}^3 Production through the HIF- \hat{l}^2 Transcription Factor. Journal of Immunology, 2009, 182, 3155-3164.	0.8	85
18	Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovascular Research, 2010, 88, 219-228.	3.8	85

#	Article	IF	Citations
19	HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovascular Research, 2016, 109, 115-130.	3.8	79
20	Matrix-Binding Vascular Endothelial Growth Factor (VEGF) Isoforms Guide Granule Cell Migration in the Cerebellum via VEGF Receptor Flk1. Journal of Neuroscience, 2010, 30, 15052-15066.	3.6	75
21	HIF1α Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis. Cell Reports, 2019, 26, 2257-2265.e4.	6.4	69
22	Role of Mitochondrial Complex IV in Age-Dependent Obesity. Cell Reports, 2016, 16, 2991-3002.	6.4	65
23	Acute O $<$ sub $>$ 2 $<$ /sub $>$ sensing through HIF2Î \pm -dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Science Signaling, 2020, 13, .	3. 6	60
24	Activation of HIF-prolyl Hydroxylases by R59949, an Inhibitor of the Diacylglycerol Kinase. Journal of Biological Chemistry, 2005, 280, 24238-24244.	3.4	52
25	Targeting L-type amino acid transporter 1 in innate and adaptive T cells efficiently controls skin inflammation. Journal of Allergy and Clinical Immunology, 2020, 145, 199-214.e11.	2.9	47
26	Hypoxia-Inducible Factor 2-Dependent Pathways Driving Von Hippel–Lindau-Deficient Renal Cancer. Frontiers in Oncology, 2018, 8, 214.	2.8	46
27	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research― Basic Research in Cardiology, 2016, 111, 69.	5.9	41
28	Role Of Hif2 $\hat{l}\pm$ Oxygen Sensing Pathway In Bronchial Epithelial Club Cell Proliferation. Scientific Reports, 2016, 6, 25357.	3.3	41
29	Synaptic activityâ€induced glycolysis facilitates membrane lipid provision and neurite outgrowth. EMBO Journal, 2018, 37, .	7.8	35
30	Dithiocarbamates Trigger Differentiation and Induction of CD11c Gene through AP-1 in the Myeloid Lineage. Journal of Biological Chemistry, 1996, 271, 10924-10931.	3 . 4	33
31	Role of diacylglycerol induced by hypoxia in the regulation of HIF- $1\hat{l}_{\pm}$ activity. Biochemical and Biophysical Research Communications, 2004, 315, 44-50.	2.1	30
32	Hypoxiaâ€inducible factor 2α drives hepatosteatosis through the fatty acid translocase CD36. Liver International, 2020, 40, 2553-2567.	3.9	29
33	Neuregulin 4 Is a Novel Marker of Beige Adipocyte Precursor Cells in Human Adipose Tissue. Frontiers in Physiology, 2019, 10, 39.	2.8	28
34	CD69 is a direct HIF- $1\hat{1}$ ± target gene in hypoxia as a mechanism enhancing expression on tumor-infiltrating T lymphocytes. Oncolmmunology, 2017, 6, e1283468.	4.6	27
35	Novel perspectives on the PHD-HIF oxygen sensing pathway in cardioprotection mediated by IPC and RIPC. Frontiers in Physiology, 2015, 6, 137.	2.8	26
36	The association of the angiopoietin/Tie-2 system with the development of metastasis and leukocyte migration in neuroendocrine tumors. Endocrine-Related Cancer, 2010, 17, 897-908.	3.1	24

#	Article	IF	CITATIONS
37	Acute Vhl Gene Inactivation Induces Cardiac HIF-Dependent Erythropoietin Gene Expression. PLoS ONE, 2011, 6, e22589.	2.5	23
38	HIF Oxygen Sensing Pathways in Lung Biology. Biomedicines, 2018, 6, 68.	3.2	22
39	Reduced intracellular oxidative metabolism promotes firm adhesion of human polymorphonuclear leukocytes to vascular endothelium under flow conditions. European Journal of Immunology, 1997, 27, 1942-1951.	2.9	18
40	15-Deoxy-Δ12,14-prostaglandin-J2 reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1α degradation. Cellular and Molecular Life Sciences, 2009, 66, 2167-2180.	5.4	16
41	Age-dependent obesity and mitochondrial dysfunction. Adipocyte, 2017, 6, 161-166.	2.8	15
42	Metformin reduces macrophage HIF1î±-dependent proinflammatory signaling to restore brown adipocyte function in vitro. Redox Biology, 2021, 48, 102171.	9.0	15
43	Role of the HIF oxygen sensing pathway in cell defense and proliferation through the control of amino acid metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118733.	4.1	13
44	Role of Iron (II)-2-Oxoglutarate-dependent Dioxygenases in the Generation of Hypoxia-induced Phosphatidic Acid through HIF-1/2 and von Hippel-Lindau-independent Mechanisms. Journal of Biological Chemistry, 2004, 279, 9504-9511.	3.4	11
45	LAT-1 and GLUT-1 Carrier Expression and Its Prognostic Value in Gastroenteropancreatic Neuroendocrine Tumors. Cancers, 2020, 12, 2968.	3.7	10
46	Neuregulin 4 Downregulation Induces Insulin Resistance in 3T3-L1 Adipocytes through Inflammation and Autophagic Degradation of GLUT4 Vesicles. International Journal of Molecular Sciences, 2021, 22, 12960.	4.1	7
47	Differential Contribution of N- and C-Terminal Regions of HIF1α and HIF2α to Their Target Gene Selectivity. International Journal of Molecular Sciences, 2020, 21, 9401.	4.1	6
48	Myeloid Hypoxia-Inducible Factors in Inflammatory Diseases. Critical Reviews in Immunology, 2011, 31, 1-13.	0.5	4
49	Sensitive and Specific Antibody Probes Directed Against The Erythropoietin Receptor – From Basic Studies To Clinical Implementation. Blood, 2013, 122, 2175-2175.	1.4	O