Paul Robson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2486394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metabolism, 2022, 34, 75-89.e8.	7.2	68
2	Single-cell transcriptome analysis defines mesenchymal stromal cells in the mouse incisor dental pulp. Gene Expression Patterns, 2022, 43, 119228.	0.3	5
3	Transcriptional profiling of macrophages in situ in metastatic melanoma reveals localization-dependent phenotypes and function. Cell Reports Medicine, 2022, 3, 100621.	3.3	15
4	The hyperpolarization-activated, cyclic nucleotide-gated channel resides on myocytes in mouse bladders and contributes to adrenergic-induced detrusor relaxation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R110-R122.	0.9	2
5	Corneal nonmyelinating Schwann cells illuminated by singleâ€cell transcriptomics and visualized by protein biomarkers. Journal of Neuroscience Research, 2021, 99, 731-749.	1.3	15
6	Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell, 2021, 39, 346-360.e7.	7.7	422
7	Human KIT+ myeloid cells facilitate visceral metastasis by melanoma. Journal of Experimental Medicine, 2021, 218, .	4.2	5
8	Somatostatin-expressing parafacial neurons are CO2/H+ sensitive and regulate baseline breathing. ELife, 2021, 10, .	2.8	9
9	Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits inÂvivo cell engraftment. Cell Reports, 2021, 35, 109088.	2.9	11
10	RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first–second trimester transition. Biology Open, 2021, 10, .	0.6	18
11	Abstract 2084: Single-cell multimodal glioma analyses reveal epigenetic regulators of cellular plasticity and environmental stress response. , 2021, , .		0
12	Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nature Genetics, 2021, 53, 1456-1468.	9.4	111
13	TMOD-13. IDENTIFYING DRIVERS IN THE CONVERGING SYNTENIC REGIONS OF SPONTANEOUS CANINE AND PEDIATRIC HIGH-GRADE GLIOMA USING IMAGING BASED CRISPR-CAS9 ARRAY SCREEN. Neuro-Oncology, 2021, 23, vi218-vi218.	0.6	0
14	Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nature Immunology, 2020, 21, 1094-1106.	7.0	212
15	Single nuclear RNA sequencing reveals microglia diversity associated with cognitive resilience in the ADâ€BXD mouse model of human Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e041543.	0.4	0
16	Antibody targeting of B7-H4 enhances the immune response in urothelial carcinoma. Oncolmmunology, 2020, 9, 1744897.	2.1	25
17	Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell, 2020, 19, e13106.	3.0	51
18	Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nature Cancer, 2020, 1, 423-436.	5.7	218

#	Article	IF	CITATIONS
19	Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. ELife, 2020, 9, .	2.8	45
20	EPCO-27. GLIOMA SINGLE CELL MULTI-OMIC ANALYSES REVEALS REGULATORS OF PLASTICITY AND ADAPTIVE STRESS RESPONSE. Neuro-Oncology, 2020, 22, ii75-ii75.	0.6	0
21	Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discovery, 2019, 9, 1102-1123.	7.7	1,120
22	Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9030-9039.	3.3	161
23	Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nature Neuroscience, 2019, 22, 642-656.	7.1	239
24	Mapping the Global Chromatin Connectivity Network for Sox2 Function in Neural Stem Cell Maintenance. Cell Stem Cell, 2019, 24, 462-476.e6.	5.2	72
25	Dynamic changes in Sox2 spatio-temporal expression promote the second cell fate decision through <i>Fgf4</i> / <i>Fgfr2</i> signaling in preimplantation mouse embryos. Biochemical Journal, 2018, 475, 1075-1089.	1.7	22
26	Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. Cell Reports, 2018, 22, 600-610.	2.9	435
27	Single-Cell Transcriptome Analysis Reveals Estrogen Signaling Coordinately Augments One-Carbon, Polyamine, and Purine Synthesis in Breast Cancer. Cell Reports, 2018, 25, 2285-2298.e4.	2.9	39
28	Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nature Communications, 2018, 9, 1925.	5.8	76
29	Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nature Communications, 2018, 9, 2759.	5.8	355
30	Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nature Genetics, 2017, 49, 708-718.	9.4	849
31	Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes. Genome Research, 2017, 27, 208-222.	2.4	440
32	The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation. Scientific Reports, 2017, 7, 17156.	1.6	58
33	Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nature Methods, 2016, 13, 833-836.	9.0	158
34	Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells. Scientific Reports, 2016, 6, 28112.	1.6	17
35	Tumor-derived circulating endothelial cell clusters in colorectal cancer. Science Translational Medicine, 2016, 8, 345ra89.	5.8	92
36	Selective influence of Sox2 on <scp>POU</scp> transcription factor binding in embryonic and neural stem cells. EMBO Reports, 2015, 16, 1177-1191.	2.0	52

#	Article	IF	CITATIONS
37	Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nature Immunology, 2015, 16, 718-728.	7.0	475
38	Transcriptional Intricacies of Stem Cells. Cell Systems, 2015, 1, 100-101.	2.9	1
39	Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development (Cambridge), 2015, 142, 3151-65.	1.2	343
40	Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development. Bioinformatics, 2015, 31, 1060-1066.	1.8	43
41	Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Genome Research, 2015, 25, 41-56.	2.4	60
42	The importance of study design for detecting differentially abundant features in high-throughput experiments. Genome Biology, 2014, 15, 527.	3.8	13
43	Integrative epigenome analysis identifies a Polycomb-targeted differentiation program as a tumor-suppressor event epigenetically inactivated in colorectal cancer. Cell Death and Disease, 2014, 5, e1324-e1324.	2.7	16
44	BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the mouse embryo. Nature Communications, 2014, 5, 5667.	5.8	84
45	Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proceedings of the United States of America, 2014, 111, E5643-50.	3.3	263
46	Deciphering Developmental Processes from Single-Cell Transcriptomes. Developmental Cell, 2014, 29, 260-261.	3.1	1
47	The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. ELife, 2014, 3, e01906.	2.8	60
48	BCL-XL Mediates the Strong Selective Advantage of a 20q11.21 Amplification Commonly Found in Human Embryonic Stem Cell Cultures. Stem Cell Reports, 2013, 1, 379-386.	2.3	132
49	Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO Journal, 2013, 32, 938-953.	3.5	161
50	Oct4 Cell-Autonomously Promotes Primitive Endoderm Development in the Mouse Blastocyst. Developmental Cell, 2013, 25, 610-622.	3.1	168
51	A genetic and developmental pathway from STAT3 to the OCT4–NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes and Development, 2013, 27, 1378-1390.	2.7	151
52	Co-Motif Discovery Identifies an Esrrb-Sox2-DNA Ternary Complex as a Mediator of Transcriptional Differences Between Mouse Embryonic and Epiblast Stem Cells. Stem Cells, 2013, 31, 269-281.	1.4	36
53	High Throughput Gene Expression Analysis Identifies Reliable Expression Markers of Human Corneal Endothelial Cells. PLoS ONE, 2013, 8, e67546.	1.1	60
54	Single-Cell mRNA Profiling Identifies Progenitor Subclasses in Neurospheres. Stem Cells and Development, 2012, 21, 3351-3362.	1.1	16

#	Article	IF	CITATIONS
55	Glycine Decarboxylase Activity Drives Non-Small Cell Lung Cancer Tumor-Initiating Cells and Tumorigenesis. Cell, 2012, 148, 259-272.	13.5	593
56	DNA-dependent Oct4–Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy. Biochemical Journal, 2012, 448, 21-33.	1.7	41
57	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509
58	Conversion of Sox17 into a Pluripotency Reprogramming Factor by Reengineering Its Association with Oct4 on DNA. Stem Cells, 2011, 29, 940-951.	1.4	92
59	Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6364-6369.	3.3	269
60	Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. Rna, 2010, 16, 324-337.	1.6	306
61	Resolution of Cell Fate Decisions Revealed by Single-Cell Gene Expression Analysis from Zygote to Blastocyst. Developmental Cell, 2010, 18, 675-685.	3.1	753
62	Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development (Cambridge), 2010, 137, 395-403.	1.2	389
63	Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes and Development, 2009, 23, 2507-2520.	2.7	218
64	Unraveling the Human Embryonic Stem Cell Phosphoproteome. Cell Stem Cell, 2009, 5, 126-128.	5.2	10
65	A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 2008, 10, 353-360.	4.6	678
66	Sall4 Regulates Distinct Transcription Circuitries in Different Blastocyst-Derived Stem Cell Lineages. Cell Stem Cell, 2008, 3, 543-554.	5.2	209
67	Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes and Development, 2008, 22, 2692-2706.	2.7	214
68	Oct4 and Sox2 Directly Regulate Expression of Another Pluripotency Transcription Factor, Zfp206, in Embryonic Stem Cells. Journal of Biological Chemistry, 2007, 282, 12822-12830.	1.6	59
69	<i>Zfp206</i> Is a Transcription Factor That Controls Pluripotency of Embryonic Stem Cells. Stem Cells, 2007, 25, 2173-2182.	1.4	50
70	Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biology, 2006, 8, 1114-1123.	4.6	501
71	The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 2006, 38, 431-440.	9.4	2,162
72	Transcriptome Profiling of Human and Murine ESCs Identifies Divergent Paths Required to Maintain the Stem Cell State. Stem Cells, 2005, 23, 166-185.	1.4	203

#	Article	IF	CITATIONS
73	Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 via the Oct4/Sox2 Complex in Embryonic Stem Cells. Molecular and Cellular Biology, 2005, 25, 6031-6046.	1.1	599
74	Transcriptional Regulation of Nanog by OCT4 and SOX2. Journal of Biological Chemistry, 2005, 280, 24731-24737.	1.6	942
75	Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue and Cell, 2005, 37, 325-334.	1.0	72
76	The maturing of the human embryonic stem cell transcriptome profile. Trends in Biotechnology, 2004, 22, 609-612.	4.9	23
77	Strategies for Directing the Differentiation of Stem Cells Into the Osteogenic Lineage In Vitro. Journal of Bone and Mineral Research, 2004, 19, 1379-1394.	3.1	144
78	Regulation of the Murine Nfatc1 Gene by NFATc2. Journal of Biological Chemistry, 2002, 277, 10704-10711.	1.6	111
79	Inner Cell Mass-Specific Expression of a Cell Adhesion Molecule (PECAM-1/CD31) in the Mouse Blastocyst. Developmental Biology, 2001, 234, 317-329.	0.9	70
80	The unusual cartilaginous tissues of jawless craniates, cephalochordates and invertebrates. Cell and Tissue Research, 2001, 304, 165-174.	1.5	58
81	Self-aggregation characteristics of recombinantly expressed human elastin polypeptides. BBA - Proteins and Proteomics, 2001, 1550, 6-19.	2.1	140
82	The Structure and Organization of Lamprin Genes: Multiple-Copy Genes with Alternative Splicing and Convergent Evolution with Insect Structural Proteins. Molecular Biology and Evolution, 2000, 17, 1739-1752.	3.5	26
83	Distinct non-collagen based cartilages comprising the endoskeleton of the Atlantic hagfish, Myxine glutinosa. Anatomy and Embryology, 2000, 202, 281-290.	1.5	27
84	Partial clone of the gene for AS protein of the lampreyPetromyzon marinus, a member of the albumin supergene family whose expression is restricted to the larval and metamorphic phases of the life cycle. , 1998, 282, 301-309.		14
85	Identification and characterization of a serpin with differential expression during the life cycle of the sea lamprey. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 253-263.	0.7	4
86	A Family of Non–Collagen-Based Cartilages in the Skeleton of the Sea Lamprey, Petromyzon marinus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 71-78.	0.7	36
87	The Appearance of Proopiomelanocortin Early in Vertebrate Evolution: Cloning and Sequencing of POMC from a Lamprey Pituitary cDNA Library. General and Comparative Endocrinology, 1995, 99, 137-144.	0.8	86
88	Decreased Elastin Synthesis in Normal Development and in Long-term Aortic Organ and Cell Cultures Is Related to Rapid and Selective Destabilization of mRNA for Elastin. Circulation Research, 1995, 77, 1107-1113.	2.0	65
89	The Role of CDX2 as a Lineage Specific Transcriptional Repressor for Pluripotent Network During Trophectoderm and Inner Cell Mass Specification. SSRN Electronic Journal, 0, , .	0.4	0