
Istvan Merchenthaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2486211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative distribution of estrogen receptor-? and -? mRNA in the rat central nervous system. Journal of Comparative Neurology, 1997, 388, 507-525.	1.6	2,033
2	Estrogen receptor α, not β, is a critical link in estradiol-mediated protection against brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1952-1957.	7.1	444
3	Estradiol Modulates bcl-2 in Cerebral Ischemia: A Potential Role for Estrogen Receptors. Journal of Neuroscience, 1999, 19, 6385-6393.	3.6	435
4	Anatomy and physiology of central galanin-containing pathways. Progress in Neurobiology, 1993, 40, 711-769.	5.7	324
5	Distribution of estrogen receptor α and β in the mouse central nervous system: In vivo autoradiographic and immunocytochemical analyses. Journal of Comparative Neurology, 2004, 473, 270-291.	1.6	288
6	High-grade intensification of the end-product of the diaminobenzidine reaction for peroxidase histochemistry Journal of Histochemistry and Cytochemistry, 1982, 30, 183-184.	2.5	229
7	Estrogen is More Than just a "Sex Hormoneâ€: Novel Sites for Estrogen Action in the Hippocampus and Cerebral Cortex. Frontiers in Neuroendocrinology, 2000, 21, 95-101.	5.2	211
8	Colocalization of galanin and luteinizing hormone-releasing hormone in a subset of preoptic hypothalamic neurons: anatomical and functional correlates Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6326-6330.	7.1	142
9	Neurons with access to the general circulation in the central nervous system of the rat: A retrograde tracing study with fluoro-gold. Neuroscience, 1991, 44, 655-662.	2.3	136
10	Neuroprotection by Estrogen in Animal Models of Global and Focal Ischemia. Annals of the New York Academy of Sciences, 2003, 1007, 89-100.	3.8	132
11	New data on the immunocytochemical localization of thyrotropin-releasing hormone in the rat central nervous system. American Journal of Anatomy, 1988, 181, 359-376.	1.0	105
12	Sexual Differences in the Distribution of Neurons Coexpressing Galanin and Luteinizing Hormone- Releasing Hormone in the Rat Brain. Endocrinology, 1991, 129, 1977-1986.	2.8	105
13	Estrogen prevents the loss of CA1 hippocampal neurons in gerbils after ischemic injury. Neuroscience, 2003, 116, 851-861.	2.3	92
14	A highly sensitive one-step method for silver intensification of the nickel-diaminobenzidine endproduct of peroxidase reaction Journal of Histochemistry and Cytochemistry, 1989, 37, 1563-1565.	2.5	89
15	Three-Dimensional Representation of the Neurotransmitter Systems of the Human Hypothalamus: Inputs of the Gonadotrophin Hormone-Releasing Hormone Neuronal System. Journal of Neuroendocrinology, 2006, 18, 79-95.	2.6	81
16	Distribution of proneuropeptide Yâ€derived peptides in the brain of <i>Rana esculenta</i> and <i>Xenopus laevis</i> . Journal of Comparative Neurology, 1993, 327, 551-571.	1.6	70
17	The effect of estrogens and antiestrogens in a rat model for hot flush. Maturitas, 1998, 30, 307-316.	2.4	68
18	Distribution of galanin-like immunoreactivity in the brain ofRana esculentaandXenopus laevis. Journal of Comparative Neurology, 1991, 310, 45-67.	1.6	65

#	Article	IF	CITATIONS
19	The hypophysiotropic galanin system of the rat brain. Neuroscience, 1991, 44, 643-654.	2.3	61
20	Copper-H2O2 oxidation strikingly improves silver intensification of the nickel-diaminobenzidine (Ni-DAB) end-product of the peroxidase reaction Journal of Histochemistry and Cytochemistry, 1988, 36, 807-810.	2.5	58
21	Topography and associations of luteinizing hormone-releasing hormone and neuropeptide Y-immunoreactive neuronal systems in the human diencephalon. Journal of Comparative Neurology, 2000, 427, 593-603.	1.6	56
22	In situ hybridization histochemical localization of prodynorphin messenger RNA in the central nervous system of the rat. , 1997, 384, 211-232.		55
23	The prodrug DHED selectively delivers 17β-estradiol to the brain for treating estrogen-responsive disorders. Science Translational Medicine, 2015, 7, 297ra113.	12.4	51
24	Light and electron microscopic immunocytochemical localization of PKC? immunoreactivity in the rat central nervous system. Journal of Comparative Neurology, 1993, 336, 378-399.	1.6	44
25	Mapping of thyrotropin-releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels. Acta Biologica Hungarica, 1994, 45, 361-74.	0.7	40
26	Nitric Oxide Is Involved in the Genesis of Pulsatile LHRH Secretion from Immortalized LHRH Neurons. Journal of Neuroendocrinology, 2003, 9, 647-654.	2.6	37
27	Corticotropin-Releasing Hormone Neurons in the Paraventricular Nucleus Project to the External Zone of the Median Eminence: A Study Combining Retrograde Labeling with Immunocytochemistry. Journal of Neuroendocrinology, 1993, 5, 175-181.	2.6	36
28	Enkephalinâ€immunoreactive neurons in the parvicellular subdivisions of the paraventricular nucleus project to the external zone of the median eminence. Journal of Comparative Neurology, 1992, 326, 112-120.	1.6	35
29	Neonatal imprinting predetermines the sexually dimorphic, estrogen-dependent expression of galanin in luteinizing hormone-releasing hormone neurons Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10479-10483.	7.1	35
30	Induction of enkephalin in tuberoinfundibular dopaminergic neurons during lactation Endocrinology, 1993, 133, 2645-2651.	2.8	34
31	Induction of proenkephalin in tuberoinfundibular dopaminergic neurons by hyperprolactinemia: the role of sex steroids Endocrinology, 1995, 136, 2442-2450.	2.8	32
32	Close Juxtapositions between LHRH Immunoreactive Neurons and Substance P Immunoreactive Axons in the Human Diencephalon. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2946-2953.	3.6	32
33	Neurotrophic Factor-α1: A Key Wnt-β-Catenin Dependent Anti-Proliferation Factor and ERK-Sox9 Activated Inducer of Embryonic Neural Stem Cell Differentiation to Astrocytes in Neurodevelopment. Stem Cells, 2017, 35, 557-571.	3.2	30
34	Estrogen and Estrogen Receptor-β (ERβ)-Selective Ligands Induce Galanin Expression within Gonadotropin Hormone-Releasing Hormone-Immunoreactive Neurons in the Female Rat Brain. Endocrinology, 2005, 146, 2760-2765.	2.8	29
35	Catecholaminergic Axons Innervate LH-Releasing Hormone Immunoreactive Neurons of the Human Diencephalon. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5620-5626.	3.6	28
36	Close anatomical associations between Î ² -endorphin and luteinizing hormone-releasing hormone neuronal systems in the human diencephalon. Neuroscience, 2004, 124, 221-229.	2.3	26

#	Article	IF	CITATIONS
37	Associations between the human growth hormone-releasing hormone- and neuropeptide-Y-immunoreactive systems in the human diencephalon: A possible morphological substrate of the impact of stress on growth. Neuroscience, 2008, 153, 1146-1152.	2.3	26
38	Bi-directional associations between galanin and luteinizing hormone-releasing hormone neuronal systems in the human diencephalon. Neuroscience, 2004, 127, 695-707.	2.3	24
39	Topography and Associations of Leu-Enkephalin and Luteinizing Hormone-Releasing Hormone Neuronal Systems in the Human Diencephalon. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1842-1848.	3.6	23
40	In situ hybridization histochemical localization of prodynorphin messenger RNA in the central nervous system of the rat. Journal of Comparative Neurology, 1997, 384, 211-32.	1.6	22
41	Galanin-immunoreactive axons innervate somatostatin-synthesizing neurons in the anterior periventricular nucleus of the rat Endocrinology, 1993, 132, 917-923.	2.8	21
42	Steroid imprinting and modulation of sexual dimorphism in the luteinizing hormone-releasing hormone neuronal system. Cellular and Molecular Neurobiology, 1996, 16, 129-141.	3.3	20
43	Induction of enkephalin in tuberoinfundibular dopaminergic neurons during lactation. Endocrinology, 1993, 133, 2645-2651.	2.8	20
44	Treatment with an orally bioavailable prodrug of 17β-estradiol alleviates hot flushes without hormonal effects in the periphery. Scientific Reports, 2016, 6, 30721.	3.3	19
45	Juxtapositions between the somatostatinergic and growth hormone-releasing hormone (GHRH) neurons in the human hypothalamus. Neuroscience, 2015, 297, 205-210.	2.3	17
46	LHRH and Sexual Dimorphism. Annals of the New York Academy of Sciences, 1998, 863, 175-187.	3.8	16
47	Estrogen stimulates galanin expression within luteinizing hormone-releasing hormone-immunoreactive (LHRH-i) neurons via estrogen receptor-beta (ERI ²) in the female rat brain. Neuropeptides, 2005, 39, 341-343.	2.2	16
48	Distribution and morphology of the catecholaminergic neural elements in the human hypothalamus. Neuroscience, 2010, 171, 187-195.	2.3	16
49	Catecholaminergic Axonal Varicosities Appear to Innervate Growth Hormone-Releasing Hormone-Immunoreactive Neurons in the Human Hypothalamus: The Possible Morphological Substrate of the Stress-Suppressed Growth. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1606-E1611.	3.6	16
50	Distribution of neuromedin U-like immunoreactivity in the central nervous system ofRana esculenta. , 1996, 369, 438-450.		14
51	Galanin and the Neuroendocrine Axes. Exs, 2010, 102, 71-85.	1.4	11
52	Intimate associations between the neuropeptide Y system and the galanin-immunoreactive neurons in the human diencephalon. Neuroscience, 2010, 170, 839-845.	2.3	8
53	Intimate associations between the endogenous opiate systems and the growth hormone-releasing hormone system in the human hypothalamus. Neuroscience, 2014, 258, 238-245.	2.3	7
54	Aging impairs galanin expression in luteinizing hormone-releasing hormone neurons: effect of ovariectomy and/or estradiol treatment. Endocrinology, 1994, 134, 324-330.	2.8	7

ISTVAN MERCHENTHALER

#	Article	IF	CITATIONS
55	Neuroprotection by estrogen in animal models of ischemia and Parkinson's disease. Drug Development Research, 2005, 66, 172-181.	2.9	6
56	Accessory mammillary bodies formed by the enlarged lateral mammillary nuclei: cytoarchitecture. Brain Structure and Function, 2019, 224, 1971-1974.	2.3	6
57	The effect of estrogens and antiestrogens in rat models of hot flush. Drug Development Research, 2005, 66, 182-188.	2.9	5
58	Corticotropin-releasing hormone (CRH)-immunoreactive (IR) axon varicosities target a subset of growth hormone-releasing hormone (GHRH)-IR neurons in the human hypothalamus. Journal of Chemical Neuroanatomy, 2016, 78, 119-124.	2.1	5
59	Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice. Endocrinology, 2016, 157, 1234-1247.	2.8	5
60	Brain-Selective Estrogen Therapy Prevents Androgen Deprivation-Associated Hot Flushes in a Rat Model. Pharmaceuticals, 2020, 13, 119.	3.8	5
61	Thyrotropin-releasing hormone axonal varicosities appear to innervate dopaminergic neurons in the human hypothalamus. Brain Structure and Function, 2020, 225, 2193-2201.	2.3	4
62	Distribution and morphology of the juxtapositions between growth hormone-releasing hormone-(ghrh)-immunoreactive neuronal elements. Growth Hormone and IGF Research, 2010, 20, 356-359.	1.1	3
63	A putative morphological substrate of the catecholamine-influenced neuropeptide Y (NPY) release in the human hypothalamus. Neuropeptides, 2011, 45, 197-203.	2.2	3
64	Catecholaminergic system innervates galanin-immunoreactive neurons in the human diencephalon. Neuroscience, 2013, 238, 327-334.	2.3	3
65	Estrogens. , 2018, , 176-183.		3
66	Localization of Inhibin Alpha-Subunit Immunoreactivity in the Rat Adrenal Cortex. Journal of Neuroendocrinology, 1991, 3, 425-428.	2.6	2
67	Substance P appears to affect growth via growth hormone-releasing hormone (GHRH) neurons in the human hypothalamus. Brain Structure and Function, 2019, 224, 2079-2085.	2.3	2
68	Presence of substance P positive terminals on hypothalamic somatostatinergic neurons in humans: the possible morphological substrate of the substance P-modulated growth hormone secretion. Brain Structure and Function, 2020, 225, 241-248.	2.3	2
69	Substance P-Immunoreactive Fiber Varicosities Appear to Innervate Galaninergic Perikarya in the Human Hypothalamus. Brain Connectivity, 2021, 11, 493-500.	1.7	1
70	Morphology and distribution of hypothalamic peptidergic systems. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 67-85.	1.8	1
71	Î'-endorphin-immunoreactive perikarya appear to receive innervation from NPY-immunoreactive fiber varicosities in the human hypothalamus. Brain Structure and Function, 2021, , 1.	2.3	1

52 Establishment of a non-human primate model for menopausal hot flushes. , 2020, 9, .

0