Tobias Neff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2485184/publications.pdf

Version: 2024-02-01

394421 552781 1,623 31 19 26 citations h-index g-index papers 32 32 32 2548 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Epigenetic regulation of protein translation in KMT2A-rearranged AML. Experimental Hematology, 2020, 85, 57-69.	0.4	9
2	The role of polycomb repressive complex 2 in early T-cell precursor acute lymphoblastic leukemia. Molecular and Cellular Oncology, 2018, 5, e1166309.	0.7	1
3	AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell, 2018, 23, 86-100.e6.	11.1	189
4	MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia. Cancer Cell, 2017, 31, 755-770.e6.	16.8	72
5	The Functional Role of PRC2 in Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) – Mechanisms and Opportunities. Frontiers in Pediatrics, 2016, 4, 49.	1.9	11
6	Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia. Cell Reports, 2016, 14, 1953-1965.	6.4	65
7	MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia. Journal of Clinical Investigation, 2016, 126, 1438-1450.	8.2	33
8	Histone profiles in cancer. , 2015, 154, 87-109.		6
9	Inactivation of Eed impedes MLL-AF9–mediated leukemogenesis through Cdkn2a-dependent and Cdkn2a-independent mechanisms in a murine model. Experimental Hematology, 2015, 43, 930-935.e6.	0.4	20
10	Epigenetic modifiers in normal and malignant hematopoiesis. Epigenomics, 2015, 7, 301-320.	2.1	23
11	Meningeoma-1 Cooperates with MLL and DOT1L to Induce Leukemia. Blood, 2015, 126, 2428-2428.	1.4	O
12	Context Dependent Role of Polycomb Repressive Complex 2 in Acute Leukemia. Blood, 2014, 124, 610-610.	1.4	0
13	MDR1 Mediated Drug Resistance to a Histone Methyltansferase Inhibitor (KMT). Blood, 2014, 124, 3622-3622.	1.4	0
14	Targeting Meningeoma-1 Driven AML through Epigenetic Modulation of the Cell of Origin. Blood, 2014, 124, 838-838.	1.4	0
15	Targeted disruption of the EZH2–EED complex inhibits EZH2-dependent cancer. Nature Chemical Biology, 2013, 9, 643-650.	8.0	302
16	Recent progress toward epigenetic therapies: the example of mixed lineage leukemia. Blood, 2013, 121, 4847-4853.	1.4	61
17	Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5028-5033.	7.1	198
18	Long-term polyclonal and multilineage engraftment of methylguanine methyltransferase P140K gene-modified dog hematopoietic cells in primary and secondary recipients. Blood, 2009, 113, 5094-5103.	1.4	29

#	Article	IF	CITATIONS
19	In Vivo Selection and Chemoprotection After Drug Resistance Gene Therapy in a Nonmyeloablative Allogeneic Transplantation Setting in Dogs. Human Gene Therapy, 2007, 18, 451-456.	2.7	31
20	Improved short-term engraftment of lentivirally versus gammaretrovirally transduced allogeneic canine repopulating cells. Journal of Gene Medicine, 2007, 9, 357-361.	2.8	4
21	Hematopoietic stem cell engraftment: a direct comparison between intramarrow and intravenous injection in nonhuman primates. Experimental Hematology, 2007, 35, 1132.e1-1132.e12.	0.4	10
22	Survival of the fittest: in vivo selection and stem cell gene therapy. Blood, 2006, 107, 1751-1760.	1.4	72
23	Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood, 2005, 105, 997-1002.	1.4	103
24	Stem cell gene transferâ€"efficacy and safety in large animal studies. Molecular Therapy, 2004, 10, 417-431.	8.2	33
25	Methylguanine methyltransferase–mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. Journal of Clinical Investigation, 2003, 112, 1581-1588.	8.2	42
26	Methylguanine methyltransferase–mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. Journal of Clinical Investigation, 2003, 112, 1581-1588.	8.2	109
27	Pharmacologically regulated in vivo selection in a large animal. Blood, 2002, 100, 2026-2031.	1.4	72
28	Pharmacologically regulated cell therapy. Blood, 2001, 97, 2535-2540.	1.4	50
29	Receptor specificity in the self-renewal and differentiation of primary multipotential hemopoietic cells. Blood, 2001, 98, 328-334.	1.4	41
30	Cytokine Prestimulation as a Gene Therapy Strategy: Implications for Using the MDR1 Gene as a Dominant Selectable Marker. Blood, 1997, 89, 146-154.	1.4	35
31	Cytokine Prestimulation as a Gene Therapy Strategy: Implications for Using the MDR1 Gene as a Dominant Selectable Marker. Blood, 1997, 89, 146-154.	1.4	2