List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reusable Nanocomposite Membranes for Highly Efficient Arsenite and Arsenate Dual Removal from Water. Advanced Materials Interfaces, 2022, 9, 2101419.	3.7	11
2	Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategies. Polymers for Advanced Technologies, 2022, 33, 1233-1243.	3.2	4
3	Enhanced mar/scratch resistance in automotive clear coatings by modifying crosslinked polyurethane network with branched flexible oligomers. Progress in Organic Coatings, 2022, 163, 106668.	3.9	10
4	Hybrid Organic–Inorganic Membranes for Photocatalytic Water Remediation. Catalysts, 2022, 12, 180.	3.5	15
5	Nanobioremediation for soil remediation: An introduction. , 2022, , 479-500.		Ο
6	Wound healing and antibacterial chitosan-genipin hydrogels with controlled drug delivery for synergistic anti-inflammatory activity. International Journal of Biological Macromolecules, 2022, 203, 679-694.	7.5	27
7	pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation. Polymers, 2022, 14, 650.	4.5	18
8	Ionic liquid modified electroactive polymer-based microenvironments for tissue engineering. Polymer, 2022, 246, 124731.	3.8	4
9	Silk Fibroin Nanocomposites with Indium Tin Oxide toward Sustainable Capacitive Touch Sensing Applications. ACS Applied Electronic Materials, 2022, 4, 1901-1909.	4.3	7
10	Drug Delivery from Hyaluronic Acid–BDDE Injectable Hydrogels for Antibacterial and Anti-Inflammatory Applications. Gels, 2022, 8, 223.	4.5	11
11	Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers, 2022, 14, 165.	4.5	36
12	Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applications. European Polymer Journal, 2022, , 111197.	5.4	2
13	Self-healing, antibacterial and anti-inflammatory chitosan-PEG hydrogels for ulcerated skin wound healing and drug delivery. , 2022, 139, 212992.		15
14	Photocrosslinkable and self-healable hydrogels of chitosan and hyaluronic acid. International Journal of Biological Macromolecules, 2022, 216, 291-302.	7.5	20
15	Tailoring new bisphenol a ethoxylated shape memory polyurethanes. Journal of Applied Polymer Science, 2021, 138, 49660.	2.6	5
16	Green alternative cosolvents to <i>N</i> -methyl-2-pyrrolidone in water polyurethane dispersions. RSC Advances, 2021, 11, 19070-19075.	3.6	15
17	Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy. Sensors, 2021, 21, 1845.	3.8	2
18	Tough Hydrogels Based on Maleic Anhydride, Bulk Properties Study and Microfiber Formation by Electrospinning. Polymers, 2021, 13, 972.	4.5	4

#	Article	IF	CITATIONS
19	Effect of metalâ€oxide nanoparticle presence and alginate crossâ€linking on cellulose nanocrystalâ€based aerogels. Journal of Applied Polymer Science, 2021, 138, 50639.	2.6	4
20	Development of Kraft Lignin Chemically Modified as a Novel Crosslinking Agent for the Synthesis of Active Hydrogels. Applied Sciences (Switzerland), 2021, 11, 4012.	2.5	5
21	Study of the capacity of poly(Nâ€vinylcarbazole) derivatives to form honeycombâ€like patterns. Journal of Applied Polymer Science, 2021, 138, 50975.	2.6	1
22	Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus. Materials Science and Engineering C, 2021, 125, 112102.	7.3	21
23	Controlling tackiness of shape memory polyurethanes for textile applications. Journal of Polymer Research, 2021, 28, 1.	2.4	2
24	Antibacterial catechol-based hyaluronic acid, chitosan and poly (N-vinyl pyrrolidone) coatings onto Ti6Al4V surfaces for application as biomedical implant. International Journal of Biological Macromolecules, 2021, 183, 1222-1235.	7.5	23
25	3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug release capability. International Journal of Biological Macromolecules, 2021, 188, 820-832.	7.5	38
26	Poly(l-lactide)-Based Anti-Inflammatory Responsive Surfaces for Surgical Implants. Polymers, 2021, 13, 34.	4.5	5
27	Biodegradable Shape-Memory Polymers. Advanced Structured Materials, 2020, , 219-236.	0.5	3
28	Tailoring silk fibroin separator membranes pore size for improving performance of lithium ion batteries. Journal of Membrane Science, 2020, 598, 117678.	8.2	33
29	Lignin-Based Hydrogels: Synthesis and Applications. Polymers, 2020, 12, 81.	4.5	118
30	Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers, 2020, 12, 2261.	4.5	34
31	Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers, 2020, 12, 2227.	4.5	68
32	Biomaterials obtained by photopolymerization: from UV to two photon. Emergent Materials, 2020, 3, 453-468.	5.7	18
33	Structural Characterization of Mono and Dihydroxylated Umbelliferone Derivatives. Molecules, 2020, 25, 3497.	3.8	9
34	β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydrate Polymers, 2020, 248, 116811.	10.2	35
35	Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. International Journal of Environmental Research and Public Health, 2020, 17, 5817.	2.6	97
36	Optically transparent silk fibroin/silver nanowire composites for piezoresistive sensing and object recognitions. Journal of Materials Chemistry C, 2020, 8, 13053-13062.	5.5	13

#	Article	IF	CITATIONS
37	Antibacterial chitosan electrostatic/covalent coating onto biodegradable poly (-lactic acid). Food Hydrocolloids, 2020, 105, 105835.	10.7	17
38	Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia, 2020, 12, 100709.	2.7	24
39	Experimental investigation of the nonlinear quasi-static and dynamic mechanical behaviour of novel PA6/XHNBR thermoplastic vulcanizates: Linking mechanical nonlinearities to microstructural features. Materials Today Communications, 2020, 25, 101395.	1.9	2
40	Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. Chemosphere, 2020, 250, 126299.	8.2	95
41	Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings, 2020, 10, 139.	2.6	71
42	New ways to improve the damping properties in highâ€performance thermoplastic vulcanizates. Polymer International, 2020, 69, 467-475.	3.1	15
43	UV curable nanocomposites with tailored dielectric response. Polymer, 2020, 196, 122498.	3.8	17
44	PCO-LLDPE thermoresponsive shape memory blends. Towards a new generation of breathable and waterproof smart membranes. European Polymer Journal, 2019, 119, 469-476.	5.4	10
45	Silk Fibroin Bending Actuators as an Approach Toward Natural Polymer Based Active Materials. ACS Applied Materials & Interfaces, 2019, 11, 30197-30206.	8.0	34
46	Toward Advanced Functional Systems: Honeycomb-Like Polymeric Surfaces Incorporating Polyoxovanadates with Surface-Appended Copper-Cyclam Complexes. Molecules, 2019, 24, 2313.	3.8	2
47	Characterization and Optimization of the Alkaline Hydrolysis of Polyacrylonitrile Membranes. Polymers, 2019, 11, 1843.	4.5	39
48	Stateâ€ofâ€ŧheâ€Art and Future Challenges of UV Curable Polymerâ€Based Smart Materials for Printing Technologies. Advanced Materials Technologies, 2019, 4, 1800618.	5.8	203
49	The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique. Materials, 2019, 12, 167.	2.9	2
50	Novel Antibacterial and Toughened Carbon-Fibre/Epoxy Composites by the Incorporation of TiO2 Nanoparticles Modified Electrospun Nanofibre Veils. Polymers, 2019, 11, 1524.	4.5	17
51	Stimuli responsive UV cured polyurethane acrylated/carbon nanotube composites for piezoresistive sensing. European Polymer Journal, 2019, 120, 109226.	5.4	29
52	Self-healable hyaluronic acid/chitosan polyelectrolyte complex hydrogels and multilayers. European Polymer Journal, 2019, 120, 109268.	5.4	55
53	Kinetic, thermal, structural and degradation studies on the effect of meta-substituted aromatic-aliphatic polyesters built through ring-opening polymerisation. Polymer Degradation and Stability, 2019, 169, 108984.	5.8	6
54	Development of multiactive antibacterial multilayers of hyaluronic acid and chitosan onto poly(ethylene terephthalate). European Polymer Journal, 2019, 112, 31-37.	5.4	26

 $\mathsf{Jos}\tilde{\mathsf{A}} @ \mathsf{L} \mathsf{Vilas}$

#	Article	IF	CITATIONS
55	Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1041-1047.	5.0	44
56	Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers. Nanoscale Advances, 2019, 1, 2284-2292.	4.6	29
57	TiO2-Doped Electrospun Nanofibrous Membrane for Photocatalytic Water Treatment. Polymers, 2019, 11, 747.	4.5	44
58	Synthesis and Characterization of Covalently Crosslinked pH-Responsive Hyaluronic Acid Nanogels: Effect of Synthesis Parameters. Polymers, 2019, 11, 742.	4.5	29
59	Toward superior applications of thermoplastic elastomer blends: double <i>T</i> _g increase and improved ductility. Polymer International, 2019, 68, 1130-1139.	3.1	9
60	Hydrolysis of poly(l ″actide)/ZnO nanocomposites with antimicrobial activity. Journal of Applied Polymer Science, 2019, 136, 47786.	2.6	5
61	Thermostructural Behavior in a Series of Lanthanide-Containing Polyoxotungstate Hybrids with Copper(II) Complexes of the Tetraazamacrocycle Cyclam: A Single-Crystal-to-Single-Crystal Transformation Study. Inorganic Chemistry, 2019, 58, 4365-4375.	4.0	7
62	Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies. Carbohydrate Polymers, 2019, 213, 159-167.	10.2	48
63	Impact of ZnO nanoparticle morphology on relaxation and transport properties of PLA nanocomposites. Polymer Testing, 2019, 75, 175-184.	4.8	24
64	Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces. Carbohydrate Polymers, 2019, 207, 824-833.	10.2	56
65	Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochimica Acta, 2019, 296, 598-607.	5.2	49
66	Antibacterial multilayer of chitosan and (2-carboxyethyl)- Î ² -cyclodextrin onto polylactic acid (PLLA). Food Hydrocolloids, 2019, 88, 228-236.	10.7	43
67	Novel shape-memory polyurethane fibers for textile applications. Textile Reseach Journal, 2019, 89, 1027-1037.	2.2	35
68	THERMO-ACTIVE SHAPE MEMORY MULTI-LAYER PAPERBOARD PACKAGING. Dyna (Spain), 2019, 94, 384-389.	0.2	0
69	Plasma poly(acrylic acid) compatibilized hydroxyapatite-polylactide biocomposites for their use as body-absorbable osteosynthesis devices. Composites Science and Technology, 2018, 161, 66-73.	7.8	16
70	MonoRes: Automatic and Accurate Estimation of Local Resolution for Electron Microscopy Maps. Structure, 2018, 26, 337-344.e4.	3.3	179
71	Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. Composites Part B: Engineering, 2018, 141, 70-75.	12.0	88
72	Thickness effect on the generation of temperature and curing degree gradients in epoxy–amine thermoset systems. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1867-1881	3.6	7

#	Article	IF	CITATIONS
73	Metal Nanoparticles Embedded in Cellulose Nanocrystal Based Films: Material Properties and Post-use Analysis. Biomacromolecules, 2018, 19, 2618-2628.	5.4	62
74	Influence of the soft segment nature on the thermomechanical behavior of shape memory polyurethanes. Polymer Engineering and Science, 2018, 58, 238-244.	3.1	33
75	Optimized Magnetodielectric Coupling on High-Temperature Polymer-Based Nanocomposites. Journal of Physical Chemistry C, 2018, 122, 1821-1827.	3.1	9
76	Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene) Tj ETQq0 0 0	rgBT /Over 12.0	lock 10 Tf 50
77	Effect of the blend ratio on the shape memory and self-healing behaviour of ionomer-polycyclooctene crosslinked polymer blends. European Polymer Journal, 2018, 98, 154-161.	5.4	38
78	Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites. Polymers, 2018, 10, 1190.	4.5	18
79	Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead. Current Opinion in Structural Biology, 2018, 52, 127-145.	5.7	15
80	Evaluation of postcuring process on the thermal and mechanical properties of the Clear02â,,¢ resin used in stereolithography. Polymer Testing, 2018, 72, 115-121.	4.8	32
81	On the use of surfactants for improving nanofiller dispersion and piezoresistive response in stretchable polymer composites. Journal of Materials Chemistry C, 2018, 6, 10580-10588.	5.5	34
82	Thermal, optical and structural properties of blocks and blends of PLA and P2HEB. Green Materials, 2018, 6, 85-96.	2.1	9
83	Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications. International Journal of Molecular Sciences, 2018, 19, 2149.	4.1	23
84	Formulation of Carbopol®/Poly(2-ethyl-2-oxazoline)s Mucoadhesive Tablets for Buccal Delivery of Hydrocortisone. Polymers, 2018, 10, 175.	4.5	27
85	U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection. Sensors, 2018, 18, 34.	3.8	31
86	Immobilization of Polyoxometalates on Tailored Polymeric Surfaces. Nanomaterials, 2018, 8, 142.	4.1	6
87	Determining the Deacetylation Degree of Chitosan: Opportunities To Learn Instrumental Techniques. Journal of Chemical Education, 2018, 95, 1022-1028.	2.3	54
88	Chiroptical luminescent nanostructured cellulose films. Materials Chemistry Frontiers, 2017, 1, 979-987.	5.9	51
89	Tuneable hydrolytic degradation of poly(l-lactide) scaffolds triggered by ZnO nanoparticles. Materials Science and Engineering C, 2017, 75, 714-720.	7.3	19
90	Interference lithography with functional block copolymer blends: Hierarchical structuration and anisotropic wetting. European Polymer Journal, 2017, 90, 25-36.	5.4	0

#	Article	IF	CITATIONS
91	Nanopatterned polystyrene-b-poly(acrylic acid) surfaces to modulate cell-material interaction. Materials Science and Engineering C, 2017, 75, 229-236.	7.3	5
92	Membranes based on polymer miscibility for selective transport and separation of metallic ions. Journal of Hazardous Materials, 2017, 336, 188-194.	12.4	36
93	Thermal, structural and degradation properties of an aromatic–aliphatic polyester built through ring-opening polymerisation. Polymer Chemistry, 2017, 8, 3530-3538.	3.9	70
94	Freeâ€volume effects on the thermomechanical performance of epoxy–SiO ₂ nanocomposites. Journal of Applied Polymer Science, 2017, 134, 45216.	2.6	18
95	Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites. Carbohydrate Polymers, 2017, 171, 193-201.	10.2	43
96	Active release coating of multilayer assembled branched and ionic β-cyclodextrins onto poly(ethylene) Tj ETQqO	0 Q rgBT /0	Overlock 10 1
97	Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resource-efficient Technologies, 2017, 3, 166-176.	0.1	67
98	Light and gas barrier properties of PLLA/metallic nanoparticles composite films. European Polymer Journal, 2017, 91, 10-20.	5.4	50
99	In situ measurements of free volume during recovery process of a shape memory polymer. Polymer, 2017, 109, 66-70.	3.8	12
100	Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. Journal of Materials Chemistry A, 2017, 5, 19184-19194.	10.3	72
101	Thermallyâ€Triggered Crystal Dynamics and Permanent Porosity in the First Heptatungstateâ€Metalorganic Threeâ€Dimensional Hybrid Framework. Chemistry - A European Journal, 2017, 23, 14962-14974.	3.3	11
102	Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. Carbohydrate Polymers, 2017, 175, 425-432.	10.2	44
103	On the Relevance of the Polar β-Phase of Poly(vinylidene fluoride) for High Performance Lithium-Ion Battery Separators. Journal of Physical Chemistry C, 2017, 121, 26216-26225.	3.1	53
104	Branched and ionic β-Cyclodextrins multilayer assembling onto polyacrylonitrile membranes for removal and controlled release of triclosan. Carbohydrate Polymers, 2017, 156, 143-151.	10.2	23
105	Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites. Polymers, 2017, 9, 449.	4.5	62
106	PROJECT-BASED LEARNING IN INSTRUMENTAL TECHNIQUES FOR UNDERGRADUATE PHARMACY STUDENTS. , 2017, , .		0
107	CREATING A SME, A PROJECT-BASED LEARNING APPROACH TO IMPROVE KNOWLEDGE AND TRANSVERSAL SKILLS ON CHEMISTRY UNDERGRADUATES. EDULEARN Proceedings, 2017, , .	0.0	0
108	Physical aging and mechanical performance of poly(<scp>l</scp> â€lactide)/ZnO nanocomposites. Journal of Applied Polymer Science, 2016, 133, .	2.6	31

#	Article	IF	CITATIONS
109	Solvent and relative humidity effect on highly ordered polystyrene honeycomb patterns analyzed by Voronoi tesselation. Journal of Applied Polymer Science, 2016, 133, .	2.6	7
110	Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose, 2016, 23, 1997-2010.	4.9	41
111	PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation. Colloids and Surfaces B: Biointerfaces, 2016, 144, 152-160.	5.0	22
112	Effect of coating on the environmental applications of zero valent iron nanoparticles: the lindane case. Science of the Total Environment, 2016, 565, 795-803.	8.0	33
113	A Robust Open Framework Formed by Decavanadate Clusters and Copper(II) Complexes of Macrocyclic Polyamines: Permanent Microporosity and Catalytic Oxidation of Cycloalkanes. Inorganic Chemistry, 2016, 55, 4970-4979.	4.0	50
114	Grafting of Cellulose Nanocrystals. , 2016, , 61-113.		26
115	Effect of cyano dipolar groups on the performance of lithium-ion battery electrospun polyimide gel electrolyte membranes. Journal of Electroanalytical Chemistry, 2016, 778, 57-65.	3.8	16
116	Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures. RSC Advances, 2016, 6, 113007-113015.	3.6	72
117	Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Advances, 2016, 6, 69094-69102.	3.6	38
118	Polysaccharide polyelectrolyte multilayer coating on poly(ethylene terephthalate). Polymer International, 2016, 65, 915-920.	3.1	17
119	Poly(<scp>l</scp> ″actide)/zno nanocomposites as efficient UVâ€shielding coatings for packaging applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	57
120	PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers, 2016, 142, 105-113.	10.2	167
121	Three-dimensional orientation of poly(<scp>l</scp> -lactide) crystals under uniaxial drawing. RSC Advances, 2016, 6, 11943-11951.	3.6	21
122	Poly(L-lactide)/branched β-cyclodextrin blends: Thermal, morphological and mechanical properties. Carbohydrate Polymers, 2016, 144, 25-32.	10.2	13
123	Construction of antibacterial poly(ethylene terephthalate) films via layer by layer assembly of chitosan and hyaluronic acid. Carbohydrate Polymers, 2016, 143, 35-43.	10.2	72
124	Preparation and characterization of soluble branched ionic \hat{l}^2 -cyclodextrins and their inclusion complexes with triclosan. Carbohydrate Polymers, 2016, 142, 149-157.	10.2	21
125	Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. Journal of Materials Science, 2016, 51, 4442-4450.	3.7	48
126	Towards the development of eco-friendly disposable polymers: ZnO-initiated thermal and hydrolytic degradation in poly(<scp>l</scp> -lactide)/ZnO nanocomposites. RSC Advances, 2016, 6, 15660-15669.	3.6	37

#	Article	IF	CITATIONS
127	Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohydrate Polymers, 2016, 136, 250-258.	10.2	92
128	Synthesis and characterization of near-infrared fluorescent and magnetic iron zero-valent nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315, 1-7.	3.9	9
129	Connecting free volume with shape memory properties in noncytotoxic gammaâ€irradiated polycyclooctene. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1080-1088.	2.1	12
130	Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature. Polymers, 2015, 7, 1674-1688.	4.5	24
131	Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers. Applied Physics A: Materials Science and Processing, 2015, 120, 731-743.	2.3	16
132	Crystallization, structural relaxation and thermal degradation in Poly(I-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydrate Polymers, 2015, 123, 256-265.	10.2	139
133	Study of the chain microstructure effects on the resulting thermal properties of poly(l-lactide)/poly(N-isopropylacrylamide) biomedical materials. Materials Science and Engineering C, 2015, 50, 97-106.	7.3	28
134	Influence of α-methyl substitutions on interpolymer complexes formation between poly(meth)acrylic acids and poly(N-isopropyl(meth)acrylamide)s. Colloid and Polymer Science, 2015, 293, 1447-1455.	2.1	15
135	Radio Frequency Magnetoelectric Effect Measured at High Temperature. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	7
136	High-temperature polymer based magnetoelectric nanocomposites. European Polymer Journal, 2015, 64, 224-228.	5.4	21
137	Sequential single-crystal-to-single-crystal transformations promoted by gradual thermal dehydration in a porous metavanadate hybrid. CrystEngComm, 2015, 17, 8915-8925.	2.6	14
138	Influence of N-alkyl and α-substitutions on the thermal behaviour of H-bonded interpolymer complexes based on polymers with acrylamide or lactame groups and poly(4-vinylphenol). Thermochimica Acta, 2015, 614, 191-198.	2.7	6
139	Enhanced Charge-Transfer Emission in Polyimides by Cyano-Groups Doping. Journal of Physical Chemistry B, 2015, 119, 5685-5692.	2.6	7
140	Development of magnetoelectric CoFe ₂ O ₄ /poly(vinylidene fluoride) microspheres. RSC Advances, 2015, 5, 35852-35857.	3.6	88
141	Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene) Tj ETQq1 1 0.784314	4 rgBT /C)verlock 10 T
142	Studying the Thermal Degradation of Different Polyacenaphthylenes via Thermogravimetric Analysis Combined With Fourier Transform Infrared Spectroscopy (TGA-FTIR). Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 718-728.	2.2	2
143	Synthesis and characterization of novel piezoelectric nitrile copolyimide films for high temperature sensor applications. Smart Materials and Structures, 2014, 23, 105015.	3.5	12
144	Thermal behaviour of H-bonded interpolymer complexes based on polymers with acrylamide or lactame groups and poly(acrylic acid): Influence of N-alkyl and α-methyl substitutions. Polymer Degradation and Stability, 2014, 109, 147-153.	5.8	13

#	Article	IF	CITATIONS
145	Synthesis and Characterization of New Thiopheneâ€Derived Polymers. Advances in Polymer Technology, 2014, 33, .	1.7	1
146	Shape memory effect for recovering surface damages on polymer substrates. Journal of Polymer Research, 2014, 21, 1.	2.4	18
147	Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties. Radiation Physics and Chemistry, 2014, 102, 108-116.	2.8	17
148	Pesticides microencapsulation. A safe and sustainable industrial process. Journal of Chemical Technology and Biotechnology, 2014, 89, 1077-1085.	3.2	28
149	Impact Damping in NiMnGa/Polymer Composites. Materials Transactions, 2014, 55, 629-632.	1.2	6
150	Improving the Processability of Conductive Polymers: The Case of Polyaniline. Advances in Polymer Technology, 2013, 32, .	1.7	16
151	Reversible functionalization of nanostructured polymer surfaces via stimuli-responsive interpolymer complexes. European Polymer Journal, 2013, 49, 130-138.	5.4	7
152	Improving the Magnetoelectric Response of Laminates Containing High Temperature Piezopolymers. IEEE Transactions on Magnetics, 2013, 49, 42-45.	2.1	11
153	Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere, 2013, 93, 1324-1332.	8.2	47
154	Air-stable Fe@Au nanoparticles synthesized by the microemulsion's methods. Journal of the Korean Physical Society, 2013, 62, 1376-1381.	0.7	5
155	Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (L-lactide). Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 242-251.	3.1	79
156	New Polyurethaneâ€based magnetostrictive composites: Dynamical mechanical properties. Polymer Engineering and Science, 2013, 53, 744-751.	3.1	4
157	Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. Journal of Experimental Botany, 2013, 64, 3033-3043.	4.8	86
158	Nonylphenol polyethoxylate coated body-center-cubic iron nanocrystals for ferrofluids with technical applications. Journal of Applied Physics, 2013, 113, .	2.5	10
159	Resonant Response of Magnetostrictive/New Piezoelectric Polymer Magnetoelectric Laminate. Sensor Letters, 2013, 11, 134-137.	0.4	5
160	Temperature Response of Magnetostrictive/Piezoelectric Polymer Magnetoelectric Laminates. Materials Research Society Symposia Proceedings, 2012, 1398, 15.	0.1	6
161	Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends. Soft Matter, 2012, 8, 4928.	2.7	71
162	Physical Aging in Poly(L-lactide) and its Multi-Wall Carbon Nanotube Nanocomposites. Macromolecular Symposia, 2012, 321-322, 118-123.	0.7	17

 $\mathsf{Jos}\tilde{\mathsf{A}} @ \mathsf{L} \mathsf{Vilas}$

#	Article	IF	CITATIONS
163	Advantages of biocides: β-cyclodextrin inclusion complexes against active components for pesticide industry. International Journal of Environmental Analytical Chemistry, 2012, 92, 963-978.	3.3	6
164	Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Materials and Structures, 2012, 21, 035004.	3.5	19
165	Biocompatible Poly(<scp>L</scp> â€lactide)/MWCNT Nanocomposites: Morphological Characterization, Electrical Properties, and Stem Cell Interaction. Macromolecular Bioscience, 2012, 12, 870-881.	4.1	48
166	Electric modulus and polarization studies on piezoelectric polyimides. Journal of Applied Polymer Science, 2012, 125, 67-76.	2.6	10
167	Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites. Polymer, 2012, 53, 2412-2421.	3.8	72
168	ROMP of Functionalized Cyclooctene and Norbornene Derivatives and their Copolymerization with Cyclooctene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 211-218.	2.2	11
169	Development and characterization of semi-crystalline polyalkenamer based shape memory polymers. Smart Materials and Structures, 2011, 20, 035003.	3.5	12
170	Copolymerization of acenaphthylene with methacrylic monomers. E-Polymers, 2011, 11, .	3.0	0
171	Effect of Reprocessing and Accelerated Weathering on ABS Properties. Journal of Polymers and the Environment, 2010, 18, 71-78.	5.0	48
172	Synthesis of poly(cyclooctene) by ringâ€opening metathesis polymerization: Characterization and shape memory properties. Journal of Applied Polymer Science, 2010, 115, 2440-2447.	2.6	29
173	Effect of reprocessing and accelerated ageing on thermal and mechanical polycarbonate properties. Journal of Materials Processing Technology, 2010, 210, 727-733.	6.3	66
174	Reutilization of thermostable polyester wastes by means of agglomeration with phenolic resins. Waste Management, 2010, 30, 2305-2311.	7.4	4
175	pH responsive surfaces with nanoscale topography. Journal of Polymer Science Part A, 2010, 48, 2982-2990.	2.3	25
176	Synthesis of gold-coated iron oxide nanoparticles. Journal of Non-Crystalline Solids, 2010, 356, 1233-1235.	3.1	25
177	Catalytic performance of the high and low temperature polymorphs of (C6N2H16)0.5[(VO)(HAsO4)F]: structural, thermal, spectroscopic and magnetic studies. Dalton Transactions, 2010, 39, 834-846.	3.3	11
178	Ring-Opening Metathesis Polymerization Kinetics of Cyclooctene with Second Generation Grubbs' Catalyst. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1130-1134.	2.2	13
179	Frozen Polarization of Piezoelectric Polyimides. Ferroelectrics, 2009, 389, 114-121.	0.6	5
180	Poly(styrene-co-vinylbenzylchloride-co-divinylbenzene) coated iron oxide: Synthesis and effects on size and morphology. Journal of Applied Physics, 2009, 105, 07B318.	2.5	1

#	Article	IF	CITATIONS
181	Synthesis, characterization, and thermal properties of piezoelectric polyimides. Journal of Polymer Science Part A, 2009, 47, 722-730.	2.3	48
182	New elastomer–Terfenol-D magnetostrictive composites. Sensors and Actuators A: Physical, 2009, 149, 251-254.	4.1	29
183	Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer. Smart Materials and Structures, 2009, 18, 075003.	3.5	50
184	Photophysical Characterization of New 3-Amino and 3-Acetamido BODIPY Dyes with Solvent Sensitive Properties. Journal of Fluorescence, 2008, 18, 899-907.	2.5	28
185	Thermal properties and fire behaviour of materials produced from curing mixed epoxy and phenolic resins. Fire and Materials, 2008, 32, 281-292.	2.0	14
186	Influence of fillers on the properties of a phenolic resin cured in acidic medium. Journal of Applied Polymer Science, 2008, 108, 387-392.	2.6	11
187	High magnetostriction polymer-bonded Terfenol-D composites. Sensors and Actuators A: Physical, 2008, 142, 538-541.	4.1	26
188	Dielectric Properties of Piezoelectric Polyimides. Ferroelectrics, 2008, 370, 3-10.	0.6	5
189	Magnetostrictive and mechanical properties of Terfenol-D composites based on polymer. Proceedings of SPIE, 2007, , .	0.8	0
190	Polyalkene-based shape-memory polymers. , 2007, , .		3
191	Magnetostrictive Properties of Polymer-Bonded Terfenol-D Composites. Sensor Letters, 2007, 5, 23-25.	0.4	1
192	Thermal Degradation of Copolymers of Nâ€Vinylcarbazole with Acrylic and Methacrylic Monomers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1029-1041.	2.2	2
193	Analysis of the crosslinking process of epoxy–phenolic mixtures by thermal scanning rheometry. Journal of Applied Polymer Science, 2005, 98, 818-824.	2.6	26
194	Dynamic mechanical properties of epoxy-phenolic mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1548-1555.	2.1	9
195	Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. Journal of Membrane Science, 2004, 228, 45-54.	8.2	123
196	Study of Polymer–Polymer Complexes of Poly(Nâ€Isopropylacrylamide) with Hydroxylâ€Containing Polymers. Journal of Macromolecular Science - Physics, 2004, 43, 437-446.	1.0	11
197	Determination of the rheological behavior of epoxy-amine thermosets by dynamic mechanical analysis: Isothermal methods versus nonisothermal methods. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1965-1977.	2.1	5
198	Thermal properties of copolymers ofN-vinylcarbazole with acrylic and methacrylic monomers. Journal of Macromolecular Science - Physics, 2002, 41, 241-253.	1.0	5

#	Article	IF	CITATIONS
199	Analysis of the crosslinking process of a phenolic resin by thermal scanning rheometry. Journal of Applied Polymer Science, 2002, 83, 57-65.	2.6	28
200	Unsaturated polyester resins cure: Kinetic, rheologic, and mechanical-dynamical analysis. I. Cure kinetics by DSC and TSR. Journal of Applied Polymer Science, 2001, 79, 447-457.	2.6	49
201	Unsaturated polyester resins cure: Kinetic, rheologic, and mechanical dynamical analysis. II. The glass transition in the mechanical dynamical spectrum of polyester networks. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 146-152.	2.1	27
202	Temperature Response of Magnetostrictive/Piezoelectric Polymer Magnetoelectric Laminates. Key Engineering Materials, 0, 495, 351-354.	0.4	13
203	Improving the Performance of High Temperature Piezopolymers for Magnetoelectric Applications. Key Engineering Materials, 0, 543, 439-442.	0.4	8
204	Synthesis and characterization of shape memory polyurethanes. , 0, , .		1