Ranieri Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484523/publications.pdf Version: 2024-02-01

		28242	21521
131	13,536	55	114
papers	citations	h-index	g-index
133	133	133	16787
all docs	docs citations	times ranked	citing authors

PANIEDI ROSSI

#	Article	IF	CITATIONS
1	Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 2003, 329, 23-38.	0.5	1,888
2	Biomarkers of Oxidative Damage in Human Disease. Clinical Chemistry, 2006, 52, 601-623.	1.5	1,395
3	Protein carbonylation in human diseases. Trends in Molecular Medicine, 2003, 9, 169-176.	3.5	813
4	Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine, 2006, 10, 389-406.	1.6	691
5	Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends in Biochemical Sciences, 2009, 34, 85-96.	3.7	557
6	S-glutathionylation in protein redox regulation. Free Radical Biology and Medicine, 2007, 43, 883-898.	1.3	422
7	Proteins as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomics. Mass Spectrometry Reviews, 2005, 24, 55-99.	2.8	392
8	The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radical Biology and Medicine, 2001, 31, 1624-1632.	1.3	353
9	Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Critical Reviews in Clinical Laboratory Sciences, 2009, 46, 241-281.	2.7	348
10	Molecular Mechanisms and Potential Clinical Significance of <i>S</i> -Glutathionylation. Antioxidants and Redox Signaling, 2008, 10, 445-474.	2.5	275
11	Nitrite and Nitrate Measurement by Griess Reagent in Human Plasma: Evaluation of Interferences and Standardization. Methods in Enzymology, 2008, 440, 361-380.	0.4	272
12	S-Glutathionylation: from redox regulation of protein functions to human diseases. Journal of Cellular and Molecular Medicine, 2004, 8, 201-212.	1.6	265
13	Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nature Protocols, 2013, 8, 1660-1669.	5.5	257
14	Blood Glutathione Disulfide: In Vivo Factor or in Vitro Artifact?. Clinical Chemistry, 2002, 48, 742-753.	1.5	227
15	Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radical Biology and Medicine, 2003, 34, 23-32.	1.3	178
16	Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radical Biology and Medicine, 2001, 31, 1075-1083.	1.3	148
17	An improved HPLC measurement for GSH and GSSG in human blood. Free Radical Biology and Medicine, 2003, 35, 1365-1372.	1.3	140
18	S-Nitrosation versus S-Glutathionylation of Protein Sulfhydryl Groups by S-Nitrosoglutathione. Antioxidants and Redox Signaling, 2005, 7, 930-939.	2.5	127

#	Article	IF	CITATIONS
19	Methionine oxidation as a major cause of the functional impairment of oxidized actin. Free Radical Biology and Medicine, 2002, 32, 927-937.	1.3	126
20	Oxidized Forms of Glutathione in Peripheral Blood as Biomarkers of Oxidative Stress. Clinical Chemistry, 2006, 52, 1406-1414.	1.5	125
21	Age-Related Influence on Thiol, Disulfide, and Protein-Mixed Disulfide Levels in Human Plasma. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 1030-1038.	1.7	122
22	Pharmacological profile of a novel H2S-releasing aspirin. Free Radical Biology and Medicine, 2009, 46, 586-592.	1.3	121
23	Redox Albuminomics: Oxidized Albumin in Human Diseases. Antioxidants and Redox Signaling, 2012, 17, 1515-1527.	2.5	121
24	Detection of S-nitrosothiols in biological fluids: A comparison among the most widely applied methodologies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 851, 124-139.	1.2	120
25	A step-by-step protocol for assaying protein carbonylation in biological samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1019, 178-190.	1.2	119
26	Nitric oxide and S-nitrosothiols in human blood. Clinica Chimica Acta, 2003, 330, 85-98.	0.5	117
27	Preferential Transport of Glutathione versusGlutathione Disulfide in Rat Liver Microsomal Vesicles. Journal of Biological Chemistry, 1999, 274, 12213-12216.	1.6	113
28	ls ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide - Biology and Chemistry, 2008, 19, 252-258.	1.2	112
29	Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radical Biology and Medicine, 2017, 112, 360-375.	1.3	111
30	Role of Protein -SH Groups in Redox Homeostasis— The Erythrocyte as a Model System. Archives of Biochemistry and Biophysics, 1998, 355, 145-152.	1.4	109
31	Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSC) in biological samples: An elephant in the room. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1019, 21-28.	1.2	107
32	Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism. Free Radical Biology and Medicine, 2003, 35, 1185-1193.	1.3	104
33	Effects of Hydrogen Sulfide-releasing l-DOPA Derivatives on Glial Activation. Journal of Biological Chemistry, 2010, 285, 17318-17328.	1.6	99
34	Cysteinylation and homocysteinylation of plasma protein thiols during ageing of healthy human beings. Journal of Cellular and Molecular Medicine, 2009, 13, 3131-3140.	1.6	89
35	Actin Cys374 as a nucleophilic target of α,β-unsaturated aldehydes. Free Radical Biology and Medicine, 2007, 42, 583-598.	1.3	82
36	S-NO-actin: S-nitrosylation kinetics and the effect on isolated vascular smooth muscle. Journal of Muscle Research and Cell Motility, 2000, 21, 171-181.	0.9	81

#	Article	IF	CITATIONS
37	Different Metabolizing Ability of Thiol Reactants in Human and Rat Blood. Journal of Biological Chemistry, 2001, 276, 7004-7010.	1.6	76
38	Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids. Free Radical Biology and Medicine, 2009, 46, 1411-1419.	1.3	76
39	S-glutathionylation in human platelets by a thiol–disulfide exchange-independent mechanism. Free Radical Biology and Medicine, 2005, 38, 1501-1510.	1.3	74
40	Therapeutic potential of new hydrogen sulfide-releasing hybrids. Expert Review of Clinical Pharmacology, 2011, 4, 109-121.	1.3	73
41	Oxidative damage in human gingival fibroblasts exposed to cigarette smoke. Free Radical Biology and Medicine, 2012, 52, 1584-1596.	1.3	73
42	Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells, Molecules, and Diseases, 2008, 40, 174-179.	0.6	70
43	Thiol groups in proteins as endogenous reductants to determine glutathione-protein mixed disulphides in biological systems. Biochimica Et Biophysica Acta - General Subjects, 1995, 1243, 230-238.	1.1	68
44	Water-Soluble α,β-Unsaturated Aldehydes of Cigarette Smoke Induce Carbonylation of Human Serum Albumin. Antioxidants and Redox Signaling, 2010, 12, 349-364.	2.5	68
45	N-Acetylcysteine ethyl ester (NACET): A novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential. Biochemical Pharmacology, 2012, 84, 1522-1533.	2.0	68
46	Altered glutathione anti-oxidant metabolism during tumor progression in human renal-cell carcinoma. International Journal of Cancer, 2001, 91, 55-59.	2.3	61
47	Fast-reacting Thiols in Rat Hemoglobins Can Intercept Damaging Species in Erythrocytes More Efficiently Than Glutathione. Journal of Biological Chemistry, 1998, 273, 19198-19206.	1.6	60
48	Adaptation of the Griess Reaction for Detection of Nitrite in Human Plasma. Free Radical Research, 2004, 38, 1235-1240.	1.5	60
49	Insulin administration: present strategies and future directions for a noninvasive (possibly) Tj ETQq1 1 0.784314	4 rgBT /Ον 2.0	erlock 10 Tf
50	A Method to Study Kinetics of Transnitrosation with Nitrosoglutathione: Reactions with Hemoglobin and Other Thiols. Analytical Biochemistry, 1997, 254, 215-220.	1.1	59
51	Protein Glutathionylation in Erythrocytes. Clinical Chemistry, 2003, 49, 327-330.	1.5	59
52	Detection of glutathione in whole blood after stabilization with N-ethylmaleimide. Analytical Biochemistry, 2011, 415, 81-83.	1.1	59
53	Glutathione, glutathione disulfide, and S-glutathionylated proteins in cell cultures. Free Radical Biology and Medicine, 2015, 89, 972-981.	1.3	59
54	The oxidation produced by hydrogen peroxide on Caâ€ATPâ€Gâ€actin. Protein Science, 2000, 9, 1774-1782.	3.1	58

#	Article	IF	CITATIONS
55	S-Glutathiolation in life and death decisions of the cell. Free Radical Research, 2011, 45, 3-15.	1.5	58
56	Low molecular mass thiols, disulfides and protein mixed disulfides in rat tissues: Influence of sample manipulation, oxidative stress and ageing. Mechanisms of Ageing and Development, 2011, 132, 141-148.	2.2	58
57	SARS-CoV2 infection impairs the metabolism and redox function of cellular glutathione. Redox Biology, 2021, 45, 102041.	3.9	58
58	Blood glutathione disulfide: in vivo factor or in vitro artifact?. Clinical Chemistry, 2002, 48, 742-53.	1.5	53
59	Antioxidant status in various tissues of the mouse after fasting and swimming stress. European Journal of Applied Physiology, 1997, 76, 302-307.	1.2	50
60	Nitric oxide, S-nitrosothiols and hemoglobin: is methodology the key?. Trends in Pharmacological Sciences, 2004, 25, 311-316.	4.0	49
61	The potential of resveratrol against human gliomas. Anti-Cancer Drugs, 2010, 21, 140-150.	0.7	49
62	A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1-12.	1.1	48
63	Modulation of thiol homeostasis induced by H2S-releasing aspirin. Free Radical Biology and Medicine, 2010, 48, 1263-1272.	1.3	47
64	Protein thiolation index (PTI) as a biomarker of oxidative stress. Free Radical Biology and Medicine, 2012, 53, 907-915.	1.3	40
65	Glutathione redox potential is low and glutathionylated and cysteinylated hemoglobin levels are elevated in maintenance hemodialysis patients. Translational Research, 2013, 162, 16-25.	2.2	39
66	Pathophysiology of tobacco smoke exposure: Recent insights from comparative and redox proteomics. Mass Spectrometry Reviews, 2014, 33, 183-218.	2.8	39
67	Physiological Levels of <i>S</i> -Nitrosothiols in Human Plasma. Circulation Research, 2001, 89, .	2.0	38
68	Protein Thiols and Glutathione Influence the Nitric Oxide-Dependent Regulation of the Red Blood Cell Metabolism. Nitric Oxide - Biology and Chemistry, 2002, 6, 186-199.	1.2	38
69	Micro-method for the determination of glutathione in human blood. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 964, 191-194.	1.2	36
70	Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid. Journal of Proteomics, 2017, 152, 22-32.	1.2	34
71	Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate. Scientific Reports, 2016, 6, 28754.	1.6	33
72	Membrane skeletal protein S-glutathionylation and hemolysis in human red blood cells. Blood Cells, Molecules, and Diseases, 2006, 37, 180-187.	0.6	30

#	Article	IF	CITATIONS
73	The age-dependent decline of the extracellular thiol-disulfide balance and its role in SARS-CoV-2 infection. Redox Biology, 2021, 41, 101902.	3.9	30
74	Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood. Biochimica Et Biophysica Acta - General Subjects, 1996, 1289, 252-260.	1.1	26
75	Protein carbonylation in human bronchial epithelial cells exposed to cigarette smoke extract. Cell Biology and Toxicology, 2019, 35, 345-360.	2.4	26
76	Minor Thiols Cysteine and Cysteinylglycine Regulate the Competition between Glutathione and Protein SH Groups in Human Platelets Subjected to Oxidative Stress. Archives of Biochemistry and Biophysics, 2000, 380, 1-10.	1.4	25
77	In Vitro Study of Methylmercury in Blood of Bottlenose Dolphins (Tursiops truncatus). Archives of Environmental Contamination and Toxicology, 2002, 42, 348-353.	2.1	25
78	The time-course of mixed disulfide formation between GSH and proteins in rat blood after oxidative stress with tert-butyl hydroperoxide. Biochimica Et Biophysica Acta - General Subjects, 1994, 1199, 245-252.	1.1	24
79	S-Nitroso-N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)–Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H2S and GSH suppliers and as antioxidants: Results and overview. Journal of Pharmaceutical Analysis, 2018. 8. 1-9.	2.4	24
80	Protein S-glutathionylation and platelet anti-aggregating activity of disulfiram. Biochemical Pharmacology, 2006, 72, 608-615.	2.0	22
81	Red Blood Cells Protect Albumin from Cigarette Smoke–Induced Oxidation. PLoS ONE, 2012, 7, e29930.	1.1	22
82	The Role of Cysteine in the Regulation of Blood Glutathione–Protein Mixed Disulfides in Rats Treated with Diamide. Toxicology and Applied Pharmacology, 1998, 148, 56-64.	1.3	21
83	Responses of thiols to an oxidant challenge: differences between blood and tissues in the rat. Chemico-Biological Interactions, 2001, 134, 73-85.	1.7	21
84	Metabolism of oxidants by blood from different mouse strains. Biochemical Pharmacology, 2006, 71, 1753-1764.	2.0	20
85	Oxidative stress induces a reversible flux of cysteine from tissues to blood <i>in vivo</i> in the rat. FEBS Journal, 2009, 276, 4946-4958.	2.2	20
86	Immediate stabilization of human blood for delayed quantification of endogenous thiols and disulfides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1019, 51-58.	1.2	20
87	Interference of Plasmatic Reduced Glutathione and Hemolysis on Glutathione Disulfide Levels in Human Blood. Free Radical Research, 2004, 38, 1101-1106.	1.5	19
88	N-acetylcysteine ethyl ester as GSH enhancer in human primary endothelial cells: A comparative study with other drugs. Free Radical Biology and Medicine, 2018, 126, 202-209.	1.3	19
89	Ozonation of Blood during Extracorporeal Circulation. I. Rationale, Methodology and Preliminary Studies. International Journal of Artificial Organs, 1999, 22, 645-651.	0.7	18
90	Analysis of thiols. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3271-3273.	1.2	18

#	Article	IF	CITATIONS
91	Cellular redox potential and hemoglobin S-glutathionylation in human and rat erythrocytes: A comparative study. Blood Cells, Molecules, and Diseases, 2010, 44, 133-139.	0.6	18
92	Anethole dithiolethione lowers the homocysteine and raises the glutathone levels in solid tissues and plasma of rats: A novel non-vitamin homocysteine-lowering agent. Biochemical Pharmacology, 2014, 89, 246-254.	2.0	18
93	Melatonin modulates Nrf2 activity to protect porcine preâ€pubertal Sertoli cells from the abnormal H ₂ O ₂ generation and reductive stress effects of cadmium. Journal of Pineal Research, 2022, 73, .	3.4	18
94	The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder. Pharmacological Research, 2012, 66, 309-316.	3.1	17
95	Glutathione S-transferase P influences the Nrf2-dependent response of cellular thiols to seleno-compounds. Cell Biology and Toxicology, 2020, 36, 379-386.	2.4	17
96	Dietary Intake of Proteins and Calories Is Inversely Associated With The Oxidation State of Plasma Thiols in End-Stage Renal Disease Patients. , 2015, 25, 494-503.		16
97	Plasma protein-bound di-tyrosines as biomarkers of oxidative stress in end stage renal disease patients on maintenance haemodialysis. BBA Clinical, 2017, 7, 55-63.	4.1	16
98	Membrane Skeletal Protein <i>S</i> -Glutathionylation in Human Red Blood Cells as Index of Oxidative Stress. Chemical Research in Toxicology, 2019, 32, 1096-1102.	1.7	16
99	The specific PKC-α inhibitor chelerythrine blunts costunolide-induced eryptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 674-685.	2.2	16
100	Plasma Protein Carbonyls as Biomarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	1.9	15
101	Subclinical ochronosis features in alkaptonuria: a cross-sectional study. BMJ Innovations, 2019, 5, 82-91.	1.0	15
102	The effects of 3 weeks of oral glutathione supplementation on whole body insulin sensitivity in obese males with and without type 2 diabetes: a randomized trial. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1133-1142.	0.9	14
103	How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism. Antioxidants, 2022, 11, 1366.	2.2	14
104	Cigarette smoke induces alterations in the drug-binding properties of human serum albumin. Blood Cells, Molecules, and Diseases, 2014, 52, 166-174.	0.6	13
105	No evidence of DNA damage by co-exposure to extremely low frequency magnetic fields and aluminum on neuroblastoma cell lines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 823, 11-21.	0.9	13
106	Protein Carbonylation in Human Smokers and Mammalian Models of Exposure to Cigarette Smoke: Focus on Redox Proteomic Studies. Antioxidants and Redox Signaling, 2017, 26, 406-426.	2.5	13
107	A seleno-hormetine protects bone marrow hematopoietic cells against ionizing radiation-induced toxicities. PLoS ONE, 2019, 14, e0205626.	1.1	13
108	Homogentisic acid affects human osteoblastic functionality by oxidative stress and alteration of the Wnt/βâ€catenin signaling pathway. Journal of Cellular Physiology, 2020, 235, 6808-6816.	2.0	13

#	Article	IF	CITATIONS
109	Is There an Answer?. IUBMB Life, 2005, 57, 189-192.	1.5	12
110	Cigarette smoke and glutathione: Focus on in vitro cell models. Toxicology in Vitro, 2020, 65, 104818.	1.1	12
111	Study of the effect of thiols on the vasodilatory potency of S-nitrosothiols by using a modified aortic ring assay. Toxicology and Applied Pharmacology, 2011, 256, 95-102.	1.3	11
112	Superior Properties of N-Acetylcysteine Ethyl Ester over N-Acetyl Cysteine to Prevent Retinal Pigment Epithelial Cells Oxidative Damage. International Journal of Molecular Sciences, 2021, 22, 600.	1.8	11
113	Differential thiol status in blood of different mouse strains exposed to cigarette smoke. Free Radical Research, 2009, 43, 538-545.	1.5	10
114	Determination of protein thiolation index (PTI) as a biomarker of oxidative stress in human serum. Analytical Biochemistry, 2017, 538, 38-41.	1.1	10
115	The new H ₂ S-releasing compound ACS94 exerts protective effects through the modulation of thiol homoeostasis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1392-1404.	2.5	10
116	Redox State and Carbonic Anhydrase Isozyme IX Expression in Human Renal Cell Carcinoma: Biochemical and Morphological Investigations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 287-291.	2.5	8
117	Evidence against a role of ketone bodies in the generation of oxidative stress in human erythrocytes by the application of reliable methods for thiol redox form detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3467-3474.	1.2	8
118	Carboplatin-induced alteration of the thiol homeostasis in the isolated perfused rat kidney. Archives of Biochemistry and Biophysics, 2009, 488, 83-89.	1.4	8
119	Cocoa Intake and Blood Pressure. JAMA - Journal of the American Medical Association, 2007, 298, 1860.	3.8	7
120	Anethole Dithiolethione Increases Glutathione in Kidney by Inhibiting Î ³ -Glutamyltranspeptidase: Biochemical Interpretation and Pharmacological Consequences. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	7
121	S-Nitrosothiols in Blood: Does Photosensitivity Explain a 4-Order-of-Magnitude Concentration Range?. Clinical Chemistry, 2009, 55, 1036-1038.	1.5	6
122	The pro-oxidant role of protein SH groups of hemoglobin in rat erythrocytes exposed to menadione. Chemico-Biological Interactions, 2002, 139, 97-114.	1.7	5
123	Plasma S-nitrosothiols and chronic renal failure. American Journal of Physiology - Renal Physiology, 2004, 287, F1294-F1295.	1.3	5
124	Measurement of S-glutathionylated proteins by HPLC. Amino Acids, 2022, 54, 675-686.	1.2	5
125	Blood Thiol Redox State in Chronic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 2853.	1.8	5
126	Proteins as Sensitive Biomarkers of Human Conditions Associated with Oxidative Stress. , 2006, ,		3

485-525.

#	Article	IF	CITATIONS
127	HPLC determination of novel dithiolethione containing drugs and its application for in vivo studies in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 340-346.	1.2	3
128	Protein thiolation index in microvolumes of plasma. Analytical Biochemistry, 2021, 618, 114125.	1.1	3
129	Homogentisic acid induces autophagy alterations leading to chondroptosis in human chondrocytes: Implications in Alkaptonuria. Archives of Biochemistry and Biophysics, 2022, 717, 109137.	1.4	3
130	On the mercapturic acid pathway of nitric oxide: is S-nitrosoglutathione present in the bile?. Hepatology, 2010, 52, 1858-1859.	3.6	1
131	Letter by Tsikas and Rossi Regarding Article, "Nitrite Anion Provides Potent Cytoprotective and Antiapoptotic Effects as Adjunctive Therapy to Reperfusion for Acute Myocardial Infarction― Circulation, 2009, 119, e531; author reply e532.	1.6	0